首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Although the C-terminal cytoplasmic tail of the tight junction protein occludin is heavily phosphorylated, the functional impact of most individual sites is undefined. Here, we show that inhibition of CK2-mediated occludin S408 phosphorylation elevates transepithelial resistance by reducing paracellular cation flux. This regulation requires occludin, claudin-1, claudin-2, and ZO-1. S408 dephosphorylation reduces occludin exchange, but increases exchange of ZO-1, claudin-1, and claudin-2, thereby causing the mobile fractions of these proteins to converge. Claudin-4 exchange is not affected. ZO-1 domains that mediate interactions with occludin and claudins are required for increases in claudin-2 exchange, suggesting assembly of a phosphorylation-sensitive protein complex. Consistent with this, binding of claudin-1 and claudin-2, but not claudin-4, to S408A occludin tail is increased relative to S408D. Finally, CK2 inhibition reversed IL-13-induced, claudin-2-dependent barrier loss. Thus, occludin S408 dephosphorylation regulates paracellular permeability by remodeling tight junction protein dynamic behavior and intermolecular interactions between occludin, ZO-1, and select claudins, and may have therapeutic potential in inflammation-associated barrier dysfunction.  相似文献   

2.
Tight junctions (TJ) control paracellular permeability and apical-basolateral polarity of epithelial cells. Dysregulated permeability is associated with pathological conditions, such as celiac disease and inflammatory bowel disease. TJ formation is dependent on E-cadherin-mediated cell-cell adhesion and actin rearrangement, and is regulated by the Rho family GTPase and aPKC signaling pathways. Larazotide acetate, an 8-mer peptide and TJ modulator, inhibits TJ disassembly and dysfunction caused by endogenous and exogenous stimuli in intestinal epithelial cells. Here, we examined the effect of larazotide acetate on de novo TJ assembly using 2 different model systems. In MDCK cells, larazotide acetate promoted TJ assembly in a calcium switch assay. Larazotide acetate also promoted actin rearrangement, and junctional distribution of zonula occludens-1 (ZO-1), occludin, claudins, and E-cadherin. Larazotide acetate promoted TJ maturation and decreased paracellular permeability in "leaky" Caco-2 cells. Taken together, our data indicate that larazotide acetate enhances TJ assembly and barrier function by promoting actin rearrangement and redistribution of TJ and AJ proteins.  相似文献   

3.
Occludin is hyperphosphorylated on Ser and Thr residues in intact epithelial tight junction (TJ); however, the role of this phosphorylation in the assembly of TJ is unclear. The influence of protein phosphatases PP2A and PP1 on the assembly of TJ and phosphorylation of occludin was evaluated in Caco-2 cells. Protein phosphatase inhibitors and reduced expression of PP2A-Calpha and PP1alpha accelerated the calcium-induced increase in transepithelial electrical resistance and barrier to inulin permeability and also enhanced the junctional organization of occludin and ZO-1 during TJ assembly. Phosphorylation of occludin on Thr residues, but not on Ser residues, was dramatically reduced during the disassembly of TJ and was gradually increased during the reassembly. PP2A and PP1 co-immunoprecipitate with occludin, and this association was reduced during the assembly of TJ. Glutathione S-transferase (GST) pull-down assay using recombinant GST-occludin demonstrated that cellular PP2A and PP1 bind to the C-terminal tail of occludin, and these interactions were also reduced during the assembly of TJ. A pairwise binding assay using GST-occludin and purified PP2A and PP1 demonstrates that PP2A and PP1 directly interacts with the C-terminal tail of occludin. In vitro incubation of phospho-occludin with PP2A or PP1 indicated that PP2A dephosphorylates occludin on phospho-Thr residues, whereas PP1 dephosphorylates it on phospho-Ser. This study shows that PP2A and PP1 directly interact with occludin and negatively regulate the assembly of TJ by modulating the phosphorylation status of occludin.  相似文献   

4.
Extensive studies have identified a large number of the molecular components of cellular tight junctions (TJ), including the claudins, occludin and ZO-1/2, and also many of the physical interactions between these molecules. However, the regulatory mechanisms of TJ formation are as yet poorly understood. In HaCaT, a human epidermal keratinocyte cell line, TJ were newly formed when cells were cultured in the presence of SP600125, a JNK inhibitor. Moreover, claudin-4 was newly phosphorylated during this process. We found that claudin-4 contains a sequence which is phosphorylated by atypical PKC (aPKC). Kinase assay demonstrated that the 195th serine (serine195) of mouse claudin-4 was phosphorylated by aPKC in vitro. The 194th serine (serine194) of human claudin-4 corresponding to serine195 of mouse claudin-4 was phosphorylated in HaCaT cells when TJ were formed, and the phosphorylated claudin-4 co-localized with ZO-1 at TJ. aPKC activity was required for both the claudin-4 phosphorylation and TJ formation in HaCaT. Furthermore, overexpression of mutant claudin-4 protein S195A, which was not phosphorylated by aPKC, perturbed the TJ formation mediated by SP600125. These findings suggest that aPKC regulates TJ formation through the phosphorylation of claudin-4.  相似文献   

5.
Bile duct epithelium forms a barrier to the backflow of bile into the liver parenchyma. However, the structure and regulation of the tight junctions in bile duct epithelium is not well understood. In the present study, we evaluated the effect of lipopolysaccharide on tight junction integrity and barrier function in normal rat cholangiocyte monolayers. Lipopolysaccharide disrupts barrier function and increases paracellular permeability in a time- and dose-dependent manner. Lipopolysaccharide induced a redistribution of tight junction proteins, occludin, claudin-1, claudin-4, and zonula occludens (ZO)-1 from the intercellular junctions and reduced the level of ZO-1. Tyrosine kinase inhibitors (genistein and PP2) prevented lipopolysaccharide-induced increase in permeability and subcellular redistribution of ZO-1. Reduced expression of c-Src, TLR4, or LBP by specific small interfering RNA attenuated lipopolysaccharide-induced permeability and redistribution of ZO-1. ML-7, a myosin light chain kinase inhibitor, attenuated LPS-induced permeability. Lipopolysaccharide treatment rapidly increased the phosphorylation of occludin and ZO-1 on tyrosine residues, which was prevented by genistein and PP2. Occludin and ZO-1 were found to be highly phosphorylated on threonine residues in intact cell monolayers. Threonine-phosphorylation of occludin was rapidly reduced by lipopolysaccharide administration. Lipopolysaccharide-induced dephosphorylation of occludin on Thr residues was prevented by genistein and PP2. In conclusion, lipopolysaccharide disrupts the tight junction of a bile duct epithelial monolayer by a c-Src-, TLR4-, LBP-, and myosin light chain kinase-dependent mechanism.  相似文献   

6.
7.
In the Madin-Darby canine kidney epithelial cell line, the proteins occludin and ZO-1 are structural components of the tight junctions that seal the paracellular spaces between the cells and contribute to the epithelial barrier function. In Ras-transformed Madin-Darby canine kidney cells, occludin, claudin-1, and ZO-1 were absent from cell-cell contacts but were present in the cytoplasm, and the adherens junction protein E-cadherin was weakly expressed. After treatment of the Ras-transformed cells with the mitogen-activated protein kinase kinase (MEK1) inhibitor PD98059, which blocks the activation of mitogen-activated protein kinase (MAPK), occludin, claudin-1, and ZO-1 were recruited to the cell membrane, tight junctions were assembled, and E-cadherin protein expression was induced. Although it is generally believed that E-cadherin-mediated cell-cell adhesion is required for tight junction assembly, the recruitment of occludin to the cell-cell contact area and the restoration of epithelial cell morphology preceded the appearance of E-cadherin at cell-cell contacts. Both electron microscopy and a fourfold increase in the transepithelial electrical resistance indicated the formation of functional tight junctions after MEK1 inhibition. Moreover, inhibition of MAPK activity stabilized occludin and ZO-1 by differentially increasing their half-lives. We also found that during the process of tight junction assembly after MEK1 inhibition, tyrosine phosphorylation of occludin and ZO-1, but not claudin-1, increased significantly. Our study demonstrates that down-regulation of the MAPK signaling pathway causes the restoration of epithelial cell morphology and the assembly of tight junctions in Ras-transformed epithelial cells and that tyrosine phosphorylation of occludin and ZO-1 may play a role in some aspects of tight junction formation.  相似文献   

8.
Epithelial cell-cell adhesion is controlled by multiprotein complexes that include E-cadherin-mediated adherens junctions (AJs) and ZO-1-containing tight junctions (TJs). Previously, we reported that reduction of E-cadherin N-glycosylation in normal and cancer cells promoted stabilization of AJs through changes in the composition and cytoskeletal association of E-cadherin scaffolds. Here, we show that enhanced interaction of hypoglycosylated E-cadherin-containing AJs with protein phosphatase 2A (PP2A) represents a mechanism for promoting TJ assembly. In MDCK cells, attenuation of cellular N-glycosylation with siRNA to DPAGT1, the first gene in the N-glycosylation pathway, reduced N-glycosylation of surface E-cadherin and resulted in increased recruitment of stabilizing proteins γ-catenin, α-catenin, vinculin and PP2A to AJs. Greater association of PP2A with AJs correlated with diminished binding of PP2A to ZO-1 and claudin-1 and with increased pools of serine-phosphorylated ZO-1 and claudin-1. More ZO-1 was found in complexes with occludin and claudin-1, and this corresponded to enhanced transepithelial resistance (TER), indicating physiological assembly of TJs. Similar maturation of AJs and TJs was detected after transfection of MDCK cells with the hypoglycosylated E-cadherin variant, V13. Our data indicate that E-cadherin N-glycans coordinate the maturity of AJs with the assembly of TJs by affecting the association of PP2A with these junctional complexes.  相似文献   

9.
The tight junction (TJ) regulates epithelial cell polarity and barrier including permeability of the paracellular pathway. Occludin was the first integral membrane protein to be discovered, but it is not indispensable for the formation of TJ strands. The physiological function of occludin is still unclear, although occludin-deficient mice show very complex abnormalities in various organs without overt dysfunction of the TJ. To investigate the role of occludin in TJ expression and apoptosis regulated by survival signal transduction pathways such as MAPK and Akt, we performed primary culture of hepatocytes and established hepatic cell lines from occludin-deficient mice. In primary cultures of occludin-deficient mouse hepatocytes, claudin-2 expression and apoptosis were induced by down-regulation of the activation of MAPK and Akt. In the hepatic cell lines derived from occludin-deficient mice, claudin-2 expression and serum-free induced apoptosis were also increased by down-regulation of the activation of MAPK and Akt. Furthermore, in the hepatic cell lines transiently transfected with mouse and rat occludin genes, induction of claudin-2 expression and the apoptosis were inhibited with increases in activation of MAPK and Akt. These findings show that occludin plays a crucial role in claudin-2-dependent TJ function and the apoptosis involving MAPK and Akt signaling pathways in hepatocytes.  相似文献   

10.
Claudin-4 regulates ion permeability via a paracellular pathway in renal epithelial cells, but its other physiological functions have not been examined. We found that hyperosmotic stress increases claudin-4 expression in Madin-Darby canine kidney cells. Here, we examined whether claudin-4 affects cell motility, cell association, and the intracellular distribution of endogenous junctional proteins. Doxycycline-inducible expression of claudin-4 did not change endogenous levels of claudin-1, claudin-2, claudin-3, occludin, E-cadherin, and ZO-1. Claudin-4 overexpression increased cell association and decreased cell migration without affecting cell proliferation. Doxycycline did not change cell junctional protein levels, cell association or cell migration in mock-transfected cells. The insolubility of claudin-1 and -3 in Triton X-100 was increased by claudin-4 overexpression, but that of claudin-2, occludin, ZO-1, and E-cadherin was unchanged. Immunocytochemistry showed that claudin-4 overexpression increases the accumulation of claudin-1 and -3 in tight junctions (TJs). Furthermore, claudin-4 overexpression increased the association of claudin-4 with claudin-1 and -3. These results suggest that claudin-4 accumulates claudin-1 and -3 in TJs to enhance cell-cell contact in renal tubular epithelial cells.  相似文献   

11.
Cerebral microvessel endothelial cells that form the blood-brain barrier (BBB) have tight junctions (TJ) that are critical for maintaining brain homeostasis and low permeability. Both integral (claudin-1 and occludin) and membrane-associated zonula occluden-1 and -2 (ZO-1 and ZO-2) proteins combine to form these TJ complexes that are anchored to the cytoskeletal architecture (actin). Disruptions of the BBB have been attributed to hypoxic conditions that occur with ischemic stroke, pathologies of decreased perfusion, and high-altitude exposure. The effects of hypoxia and posthypoxic reoxygenation in cerebral microvasculature and corresponding cellular mechanisms involved in disrupting the BBB remain unclear. This study examined hypoxia and posthypoxic reoxygenation effects on paracellular permeability and changes in actin and TJ proteins using primary bovine brain microvessel endothelial cells (BBMEC). Hypoxia induced a 2.6-fold increase in [(14)C]sucrose, a marker of paracellular permeability. This effect was significantly reduced (~58%) with posthypoxic reoxygenation. After hypoxia and posthypoxic reoxygenation, actin expression was increased (1.4- and 2.3-fold, respectively). Whereas little change was observed in TJ protein expression immediately after hypoxia, a twofold increase in expression was seen with posthypoxic reoxygenation. Furthermore, immunofluorescence studies showed alterations in occludin, ZO-1, and ZO-2 protein localization during hypoxia and posthypoxic reoxygenation that correlate with the observed changes in BBMEC permeability. The results of this study show hypoxia-induced changes in paracellular permeability may be due to perturbation of TJ complexes and that posthypoxic reoxygenation reverses these effects.  相似文献   

12.
Tight-junction strands, which are organized into the beltlike cell-cell adhesive structure called the zonula occludens (TJ), create the paracellular permselective barrier in epithelial cells. The TJ is constructed on the basis of the zonula adherens (AJ) by polymerized claudins in a process mediated by ZO-1/2, but whether the 24 individual claudin family members play different roles at the TJ is unclear. Here we established a cell system for examining the polymerization of individual claudins in the presence of ZO-1/2 using an epithelial-like cell line, SF7, which lacked endogenous TJs and expressed no claudin but claudin-12 in immunofluorescence and real-time PCR assays. In stable SF7-derived lines, exogenous claudin-7, -14, or -19, but no other claudins, individually reconstituted TJs, each with a distinct TJ-strand pattern, as revealed by freeze-fracture analyses. Fluorescence recovery after photobleaching (FRAP) analyses of the claudin dynamics in these and other epithelial cells suggested that slow FRAP-recovery dynamics of claudins play a critical role in regulating their polymerization around AJs, which are loosely coupled with ZO-1/2, to form TJs. Furthermore, the distinct claudin stabilities in different cell types may help to understand how TJs regulate paracellular permeability by altering the paracellular flux and the paracellular ion permeability.  相似文献   

13.
Apicolateral tight junctions (TJs) between epithelial cells are multiprotein complexes regulating membrane polarity and paracellular transport and also contribute to signalling pathways affecting cell proliferation and gene expression. ZO-2 and other ZO family members form a sub-membranous scaffold for binding TJ constituents. We investigated ZO-2 contribution to TJ biogenesis and function during trophectoderm epithelium differentiation in mouse preimplantation embryos. Our data indicate that ZO-2 is expressed from maternal and embryonic genomes with maternal ZO-2 protein associated with nuclei in zygotes and particularly early cleavage stages. Embryonic ZO-2 assembled at outer blastomere apicolateral junctional sites from the late 16-cell stage. Junctional ZO-2 first co-localised with E-cadherin in a transient complex comprising adherens junction and TJ constituents before segregating to TJs after their separation from the blastocyst stage (32-cell onwards). ZO-2 siRNA microinjection into zygotes or 2-cell embryos resulted in specific knockdown of ZO-2 mRNA and protein within blastocysts. Embryos lacking ZO-2 protein at trophectoderm TJs exhibited delayed blastocoel cavity formation but underwent normal cell proliferation and outgrowth morphogenesis. Quantitative analysis of trophectoderm TJs in ZO-2-deficient embryos revealed increased assembly of ZO-1 but not occludin, indicating ZO protein redundancy as a compensatory mechanism contributing to the mild phenotype observed. In contrast, ZO-1 knockdown, or combined ZO-1 and ZO-2 knockdown, generated a more severe inhibition of blastocoel formation indicating distinct roles for ZO proteins in blastocyst morphogenesis.  相似文献   

14.
There is increasing evidence that the transforming DNA tumor virus simian virus 40 (SV40) is associated with human malignancies. SV40 small tumor antigen (small t) interacts with endogenous serine/threonine protein phosphatase 2A (PP2A) and is required for the transforming activity of SV40 in epithelial cells of the lung and kidney. Here, we show that expression of SV40 small t in epithelial MDCK cells induces acute morphological changes and multilayering. Significantly, it also causes severe defects in the biogenesis and barrier properties of tight junctions (TJs) but does not prevent formation of adherens junctions. Small t-induced TJ defects are associated with a loss of PP2A from areas of cell-cell contact; altered distribution and reduced amounts of the TJ proteins ZO-1, occludin, and claudin-1; and marked disorganization of the actin cytoskeleton. Small t-mediated F-actin rearrangements encompass increased Rac-induced membrane ruffling and lamellipodia, Cdc42-initiated filopodia, and loss of Rho-dependent stress fibers. Indeed, these F-actin changes coincide with elevated levels of Rac1 and Cdc42 and decreased amounts of RhoA in small t-expressing cells. Notably, these cellular effects of small t are dependent on its interaction with endogenous PP2A. Thus, our findings provide the first evidence that, in polarized epithelial cells, expression of small t alone is sufficient to induce deregulation of Rho GTPases, F-actin, and intercellular adhesion, through interaction with endogenous PP2A. Because defects in the actin cytoskeleton and TJ disruption have been linked to loss of cell polarity and tumor invasiveness, their deregulation by PP2A and small t likely contributes to the role of SV40 in epithelial cell transformation.  相似文献   

15.
Monocyte chemoattractant protein-1 (MCP-1 or CCL2) regulates blood-brain barrier permeability by inducing morphological and biochemical alterations in the tight junction (TJ) complex between brain endothelial cells. The present study used cultured brain endothelial cells to examine the signaling networks involved in the redistribution of TJ proteins (occludin, ZO-1, ZO-2, claudin-5) by CCL2. The CCL2-induced alterations in the brain endothelial barrier were associated with de novo Ser/Thr phosphorylation of occludin, ZO-1, ZO-2, and claudin-5. The phosphorylated TJ proteins were redistributed/localized in Triton X-100-soluble as well as Triton X-100-insoluble cell fractions. Two protein kinase C (PKC) isoforms, PKCalpha and PKCzeta, had a significant impact on this event. Inhibition of their activity using dominant negative mutants PKCalpha-DN and PKCzeta-DN diminished CCL2 effects on brain endothelial permeability. Previous data indicate that Rho/Rho kinase signaling is involved in CCL2 regulation of brain endothelial permeability. The interactions between the PKC and Rho/Rho kinase pathways were therefore examined. Rho, PKCalpha, and PKCzeta activities were knocked down using dominant negative mutants (T17Rho, PKCalpha-DN, and PKCzeta-DN, respectively). PKCalpha and Rho, but not PKCzeta and Rho, interacted at the level of Rho, with PKCalpha being a downstream target for Rho. Double transfection experiments using dominant negative mutants confirmed that this interaction is critical for CCL2-induced redistribution of TJ proteins. Collectively these data suggest for the first time that CCL2 induces brain endothelial hyperpermeability via Rho/PKCalpha signal pathway interactions.  相似文献   

16.
Occludin is an integral membrane protein of the epithelial cell tight junction (TJ). Its potential role in coordinating structural and functional events of TJ formation has been suggested recently. Using a rat salivary gland epithelial cell line (Pa-4) as a model system, we have demonstrated that occludin not only is a critical component of functional TJs but also controls the phenotypic changes associated with epithelium oncogenesis. Transfection of an oncogenic Raf-1 into Pa-4 cells resulted in a complete loss of TJ function and the acquisition of a stratified phenotype that lacked cell-cell contact growth control. The expression of occludin and claudin-1 was downregulated, and the distribution patterns of ZO-1 and E-cadherin were altered. Introduction of the human occludin gene into Raf-1-activated Pa-4 cells resulted in reacquisition of a monolayer phenotype and the formation of functionally intact TJs. In addition, the presence of exogenous occludin protein led to a recovery in claudin-1 protein level, relocation of the zonula occludens 1 protein (ZO-1) to the TJ, and redistribution of E-cadherin to the lateral membrane. Furthermore, the expression of occludin inhibited anchorage-independent growth of Raf-1-activated Pa-4 cells in soft agarose. Thus, occludin may act as a pivotal signaling molecule in oncogenic Raf- 1-induced disruption of TJs, and regulates phenotypic changes associated with epithelial cell transformation.  相似文献   

17.
Glucocorticoids and prolactin (PRL) have a direct effect on the formation and maintenance of tight junctions (TJs) in cultured endothelial and mammary gland epithelial cells. In this work, we investigated the effect of a synthetic glucocorticoid dexamethasone (DEX) and PRL on the paracellular barrier function in MDCK renal epithelial cells. DEX (4 microM)+PRL (2 microg/ml) and DEX alone increased significantly the transepithelial electrical resistance after chronic treatment (4 days) of confluent MDCK monolayers or after 24 h treatment of subconfluent monolayers. Immunoblotting and immunocytochemistry revealed no changes in the expression and distribution of TJ-associated proteins occludin, ZO-1 and claudin-1 in confluent monolayers after hormone addition. However, a marked increase in junctional content for occludin and ZO-1 with no changes in their total expression was observed in subconfluent MDCK monolayers 24 h exposed to DEX or DEX+PRL. No change in cell proliferation/growth was detected at subconfluent conditions following hormone treatment. An increase in the total number of viable cells was observed only in confluent MDCK monolayers after exposure to DEX+PRL suggesting that the main effect of these hormones on already established barrier may be associated with the inhibition of cell death. In conclusion, our data suggest that these hormones (specially dexamethasone) have an effect on TJ structure and function only during the formation of MDCK epithelial barrier by probably modulating the localization, stability or assembly of TJ proteins to membrane sites of intercellular contact.  相似文献   

18.
At the interface between host and external environment, the airway epithelium serves as a major protective barrier. In the present study we show that protein kinase D (PKD) plays an important role in the formation and integrity of the airway epithelial barrier. Either inhibition of PKD activity or silencing of PKD increased transepithelial electrical resistance (TEER), resulting in a tighter epithelial barrier. Among the three PKD isoforms, PKD3 knockdown was the most efficient one to increase TEER in polarized airway epithelial monolayers. In contrast, overexpression of PKD3 wild type, but not PKD3 kinase-inactive mutant, disrupted the formation of apical intercellular junctions and their reassembly, impaired the development of TEER, and increased paracellular permeability to sodium fluorescein in airway epithelial monolayers. We further found that overexpression of PKD, in particular PKD3, markedly suppressed the mRNA and protein levels of claudin-1 but had only minor effects on the expression of other tight junctional proteins (claudin-3, claudin-4, claudin-5, occludin, and ZO-1) and adherent junctional proteins (E-cadherin and β-catenin). Immunofluorescence study revealed that claudin-1 level was markedly reduced and almost disappeared from intercellular contacts in PKD3-overexpressed epithelial monolayers and that claudin-4 was also restricted from intercellular contacts and tended to accumulate in the cell cytosolic compartments. Last, we found that claudin-1 knockdown prevented TEER elevation by PKD inhibition or silencing in airway epithelial monolayers. These novel findings indicate that PKD negatively regulates human airway epithelial barrier formation and integrity through down-regulation of claudin-1, which is a key component of tight junctions.  相似文献   

19.
Trefoil factor peptides are highly conserved secreted molecules characterized by heat and enzymatic digestion resistance. Intestinal trefoil factor 3 (TFF3) protects and repairs the gastrointestinal mucosa and restores normal intestinal permeability, which is dependent on the integrity of the tight junction (TJ) barrier and the TJ associated proteins claudin-1, zona occludens-1 (ZO-1) and occludin. Despite the important role of intestinal barrier dysfunction in the pathogenesis of inflammatory bowel diseases, the underlying mechanisms and associated molecules remain unclear. In the present study, we show that TFF3 and toll-like receptor 2 (TLR2) are functionally linked and modulate intestinal epithelial permeability via a mechanism that involves the PI3K/Akt pathway. We used the Caco-2 cell model to show that TLR2 and TFF3 inhibit the IL-1β induced increase in permeability and release of proinflammatory cytokines, and that this effect is mediated by activation of PI3K/Akt signaling. TLR2 silencing downregulated the expression of TFF3 and overexpression of TLR2 and TFF3 increased the levels of phospho-Akt. TFF3 overexpression significantly upregulated the expression of ZO-1, occludin and claudin-1 and this effect was abrogated by inhibition of the PI3K/Akt pathway. Taken together, our results indicate that TLR2 signaling selectively enhances intestinal TJ barrier integrity through a mechanism involving TFF3 and the activation of the PI3K/Akt pathway.  相似文献   

20.
Tight junctions (TJs), the most apical of the intercellular junctions, prevent the passage of ions and molecules through the paracellular pathway. Intracellular signalling molecules are likely to be involved in the regulation of TJ integrity. In order to specifically investigate the role of protein kinase A (PKA) in the maintenance of epithelial TJ integrity, calcium-switch experiments were performed, in which calcium was removed from EpH4 and MDCK culture medium, in the absence or presence of the PKA inhibitors H-89 or HA-1004. Removal of calcium from the culture media of the epithelial cells resulted in disruption of the TJs, characterised by a loss of membrane association of the TJ-associated proteins occludin, ZO-1 and ZO-2, by a loss of TJ strands, by a marked decrease in the transepithelial electrical resistance and by a dramatic increase in the transepithelial permeability to tracers. The association of occludin, ZO-1 and ZO-2 with the actin cytoskeleton is not affected. In contrast, when the removal of calcium was performed in the presence of either the PKA inhibitor H-89 or HA-1004, all barrier characteristics were preserved. Our data indicate that following the removal of calcium from the culture medium of epithelial cells in vitro, PKA is activated and subsequently is involved in the disruption of TJs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号