首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In frogs' isolated urinary bladders, contribution of cytosolic guanylate cyclase and cGMP-dependent protein kinase to regulation of osmotic permeability was studied. ODQ (25-100 microM), an inhibitor of cytosolic guanylate cyclase induced an increase of vasotocin-activated osmotic permeability but had no effect on the hormone-activated transepithelial urea transport. In isolated mucosal epithelial cells ODQ (50 microM) decreased the concentration of intracellular cGMP. In these cells L-NAME (0.5 nM), an inhibitor of NO synthase, also decreased the level of cGMP whereas cAMP was significantly increased. 8-pCPT-cGMP (25 and 50 microM), a permeable cGMP analogue which selectively activates protein kinase G, inhibited vasotocin-induced increase of water transport along osmotic gradient indicating that protein kinase G is involved in regulation of water reabsorption. The data obtained show that NO/cGMP signalling system in the frog urinary bladder appears to be a negative modulator of vasotocin-activated increase of osmotic permeability.  相似文献   

2.
Principal similarities between molecular pathways providing the enhancement of water and urea reabsorption under the action of argininvasotocin (AVT) in amphibian urinary bladder suggest that prostaglandin E2 (PGE2) could be a negative regulator of urea transport. To analyse this hypothesis, the role of PGE2 in regulation of urea transport was studied in isolated frog (Rana temporaria L.) urinary bladder. The urea permeability (Pu) was determined from the rate of efflux of (14) Curea from mucosal to serosal solution in isoosmotic conditions. The water permeability was measured in separate experiments in presence of an osmotic gradient. In contrast to water permeability, we were unable to demonstrate any inhibitory effect of 10-1000 nM PGE2 on AVT-stimulated urea transport using a variety of protocols. It was found that basolateral PGE2 exposure (10 nM-1 microM) caused an increase in Pu with no effect on osmotic water flow. The PGE2 effect was markedly inhibited by phloretin, a specific inhibitor of urea transporter. Sulprostone, an EP1/EP3 prostaglandin E2 receptor agonist, had no effect on Pu suggesting the contribution of EP2/EP4 receptor subtypes. In presence of osmotic water flow, the AVT-induced urea transport was significantly higher. This water flow-dependent urea permeability was inhibited by PGE2 although the inhibitory effect was less pronounced in comparison to the action of PGE2 on osmotic water flow. On the basis of these results we can make a conclusion that PGE2 has different role in regulation of water and urea transport in the frog urinary bladder. PGE2 could be considered as a stimulator of urea transport and an inhibitor of osmotic water flow activated by the AVT. The ability of PGE2 to regulate various types of cAMP-dependent transport by different mechanisms seems to be based on the presence of multiple basolateral PGE2 receptor subtypes in amphibian osmosis-regulatory epithelium.  相似文献   

3.
The influence of endogenous gram-negative bacteria colonizing the mucosal epithelium of frog Rana temporaria L. urinary bladders (FUB) on arginine-vasotocin AVT-stimulated osmotic water flow in isolated urinary bladders was investigated. 170 animals were examined and only 40% were contaminated with gram-negative bacteria (about 10(3)-10(6) CFU per hemibladder). Several Enterobacteriaceae species were identified (Hafnia alvei, 36.7%, E. coli, 32.3%, Serratia marcescens, 8.8%, Citrobacter freundii, 4.4% etc.). Basal osmotic water flow level was invariable in "clean" and contaminated FUB, whereas bacterial contamination resulted in considerable decrease in AVT-stimulated water flow ("clean": 2.53 +/- 0.13, n = 59, contaminated: 1.21 +/- 0.17 me/min/cm2, n = 38, p < 0.001, within first 15 min of incubation with 5 x 10(-10)M AVT). Gentamycin protection assay revealed predominantly adhesive forms of bacteria. Thus our data indicated that the presence of gram-negative bacteria colonizing the mucosal epithelium of the urinary bladder results in decreased adility of ADH to rise osmotic water permeability which in turn could impair body osmoregulation.  相似文献   

4.
PGE(2) is a well-known inhibitor of the antidiuretic hormone-induced increase of osmotic water permeability (OWP) in different osmoregulatory epithelia; however, the mechanisms underlying this effect of PGE(2) are not completely understood. Here, we report that, in the frog Rana temporaria urinary bladder, EP(1)-receptor-mediated inhibition of arginine-vasotocin (AVT)-induced OWP by PGE(2) is attributed to increased generation of nitric oxide (NO) in epithelial cells. It was shown that the inhibitory effect of 17-phenyl-trinor-PGE(2) (17-ph-PGE(2)), an EP(1) agonist, on AVT-induced OWP was significantly reduced in the presence of 7-nitroindazole (7-NI), a neuronal NO synthase (nNOS) inhibitor. NO synthase (NOS) activity in both lysed and intact epithelial cells measured as a rate of conversion of l-[(3)H]arginine to l-[(3)H]citrulline was Ca(2+) dependent and inhibited by 7-NI. PGE(2) and 17-ph-PGE(2), but not M&B-28767 (EP(3) agonist) or butaprost (EP(2) agonist), stimulated NOS activity in epithelial cells. The above effect of PGE(2) was abolished in the presence of SC-19220, an EP(1) antagonist. 7-NI reduced the stimulatory effect of 17-ph-PGE(2) on NOS activity. 17-ph-PGE(2) increased intracellular Ca(2+) concentration and cGMP in epithelial cells. Western blot analysis revealed an nNOS expression in epithelial cells. These results show that the inhibitory effect of PGE(2) on AVT-induced OWP in the frog urinary bladder is based at least partly on EP(1)-receptor-mediated activation of the NO/cGMP pathway, suggesting a novel cross talk between AVT, PGE(2), and nNOS that may be important in the regulation of water transport.  相似文献   

5.
The role of intercellular pathways in the ADH-dependent water transport was studied on the frog urinary bladder by means of acetylcholine (AC) and other cholinergic compounds. AC (10(-3) M) was found to cause a strong suppression of the pituitrin-stimulated water flow. Analogous effect was produced by AC on the osmotic flow stimulated by cyclic adenosine monophosphate (cAMP) and theolin. The antipituitrin effect was not reproduced either by nicotine, nor by potent M-cholinomimetic agents (methylfurmetide and F-2268), and was not prevented by M- and N-cholynolytic drugs (atropine, metacin, flaxedil, hexamethonium). However, the antipituitrin effect of AC was completely removed by the anticholinesterase drugs with different mode of action (eserine, proserine, armin, acridine iodmethylate, GD-42) in concentrations of 10(-6)--10(-3) M. It was concluded that the smooth muscles contraction with the subsequent closure of the intercellular spaces was not responsible for the antipituitrinic action of AC. This effect appears to be connected with cholinesterase activation. A possible role of the phosphoinositides in the water permeability regulation of the urinary bladder wall is discussed.  相似文献   

6.
The experiments carried out on the urinary bladder of the frog Rana temporaria L. have shown that the period of recovery of water impermeability after an increase of osmotic water permeability induced by arginine-vasotocin, desmopressin, or cAMP depends on the degree of increase of the osmotic permeability but not on the nature of the substance stimulating the increase of osmotic water permeability. The removal of the hormone in the absence of autacoids fails to recover the water impermeability. After cessation of the vasotocin action the water permeability decrease is delayed if phospholipase A2 and cyclooxygenase are inhibited by qiunacrine and voltaren, respectively. An agonist of V1-receptors has no effect on dynamics of the recovery of water impermeability. This recovery has been shown to depend on PGE2 concentration in the serosal solution after the hormone removal. The obtained results indicate that decrease of water permeability depends not only on removal of vasotocin or cAMP but also on involvement of autacoids.  相似文献   

7.
We have demonstrated previously that atrial natriuretic factor (ANF) augments urinary, plasma and kidney cGMP levels but has no significant effect upon cAMP. Using cGMP as a marker, we searched for specific target sites involved in the action of ANF in the dog kidney, and observed no change of cGMP in the proximal tubules, a 2-fold increase over basal levels in the thick loop of Henle and a 3-fold elevation in the collecting duct. The most striking action on cGMP occurred in the glomeruli with a rise of up to 50-fold being evident at 1-2 min. after the addition of ANF. The results obtained in the absence or presence of a phosphodiesterase inhibitor support the notion that the effects of ANF were exerted at the level of guanylate cyclase stimulation rather than cGMP phosphodiesterase inhibition. The action of sodium nitroprusside (SNP), a direct stimulator of soluble guanylate cyclase, differed from that of ANF. The ability of the factor to enhance cGMP levels was correlated with the distribution of particulate guanylate cyclase. This study identifies the glomeruli and the distal part of the nephron as specific targets of ANF and implicates particulate guanylate cyclase as the enzyme targetted for the expression of its action.  相似文献   

8.
Elevation of either cAMP or cGMP causes smooth muscle relaxation. Whether these effects are mediated through cAMP-dependent protein kinase (cAK), cGMP-dependent protein kinase (cGK), or both is unknown. Pig coronary arteries were treated with sodium nitroprusside (SNP) or atrial natriuretic factor (ANF), relaxants which elevate cGMP, and with isoproterenol or forskolin, relaxants which elevate cAMP. Incubation of the arteries with 10 microM SNP produced a 3.3-fold increase in cGMP without altering cAMP; the cGK activity ratio (-cGMP/+cGMP) in these extracts was increased by 2.6-fold as determined by a newly developed assay, while the cAK activity ratio (-cAMP/+cAMP) was unchanged. The increase in cGK activity ratio by SNP was concentration-dependent and was nearly maximal at 30 s. Treatment of the tissue with 10 nM ANF also increased the cGK activity ratio (2.3-fold), but not that of cAK. 100 microM isoproterenol caused a 2.9-fold elevation of cAMP with no change in cGMP, but both cAK and cGK activity ratios were increased (2.3- and 1.6-fold, respectively). The increase in the cGK activity ratio could be mimicked by cAMP addition to control tissue extracts at the concentration measured in extracts of the isoproterenol-treated tissue. Forskolin (1 and 10 microM) also increased the cGK activity ratio (1.9- and 4.9-fold). The increases in cGK activity observed in extracts suggest that moderate elevation of either cGMP or cAMP causes intracellular cGK activation, thus producing relaxation of vascular smooth muscle.  相似文献   

9.
The atrial natriuretic peptide cardionatrin I (cardionatrin I is ANF 99-126) was used in studies directed to assess its effects on osmotic water permeability (Posm) and short-circuit current (SCC) in isolated toad skin. Results showed that ANF 99-126 (10(-7) M) added to the dermal side of the skin had no effect on basal Posm or SCC. However, ANF 99-126 (3.3 x 10(-8) M) was able to produce a 50% reversible inhibition of the maximal Posm response to angiotensin II (AII) (3.2 x 10(-8) M). These effects were seen when the skins were preincubated with ANF 99-126 for 10 min or less before the addition of AII. Longer preincubation appeared to inactivate ANF 99-126 through proteolysis. ANF 99-126(10(-7) M) failed to inhibit the SCC response to AII (10(-5) M) in toad skin. These results are compatible with a modulatory function for ANF on several systems including those involved in the regulation of extracellular fluid volume.  相似文献   

10.
Previously we showed that atrial natriuretic factor (ANF) decreases cardiac cell volume by inhibiting ion uptake by Na+/K+/2Cl- cotransport. Digital video microscopy was used to study the role of guanosine 3',5'-monophosphate (cGMP) in this process in rabbit ventricular myocytes. Each cell served as its own control, and relative cell volumes (volume(test)/volume(control)) were determined. Exposure to 10 microM 8-bromo-cGMP (8-Br-cGMP) reversibly decreased cell volume to 0.892 +/- 0.007; the ED50 was 0.77 +/- 0.33 microM. Activating guanylate cyclase with 100 microM sodium nitroprusside also decreased cell volume to 0.889 +/- 0.009. In contrast, 8-bromo-adenosine 3',5'-monophosphate (8-Br-AMP; 0.01-100 microM) neither altered cell volume directly nor modified the response to 8-Br-cGMP. The idea that cGMP decreases cell volume by inhibiting Na+/K+/2Cl- cotransport was tested by blocking the cotransporter with 10 microM bumetanide (BUM) and removing the transported ions. After BUM treatment, 10 microM 8-Br-cGMP failed to decrease cell volume. Replacement of Na+ with N-methyl-D-glucamine or Cl- with methanesulfonate also prevented 8-Br-cGMP from shrinking cells. The data suggest that 8-Br-cGMP, like ANF, decreases ventricular cell volume by inhibiting Na+/K+/2Cl-cotransport. Evidence that ANF modulates cell volume via cGMP was also obtained. Pretreatment with 10 microM 8-Br-cGMP prevented the effect of 1 microM ANF on cell volume, and ANF suppressed 8-Br-cGMP-induced cell shrinkage. Inhibiting guanylate cyclase with the quinolinedione LY83583 (10 microM) diminished ANF-induced cell shrinkage, and inhibiting cGMP-specific phosphodiesterase with M&B22948 (Zaprinast; 100 microM) amplified the volume decrease caused by a low dose of ANF (0.01 microM) approximately fivefold. In contrast, neither 100 microM 8-Br-cAMP nor 50 microM forskolin affected the response to ANF. The effects of ANF, LY83583, and M&B29948 on cGMP levels in isolated ventricular myocytes were confirmed by 125I-cGMP radioimmunoassay. These data argue that ANF shrinks cardiac cells by increasing intracellular cGMP, thereby inhibiting Na+/K+/2Cl- cotransport. Basal cGMP levels also appear to modulate cell volume.  相似文献   

11.
Two soluble cyclic nucleotide phosphodiesterase activities, designated Peak I (Mr = 216,000) and Peak II (Mr = 230,000), have been isolated from bovine adrenal medulla by DEAE-cellulose chromatography. Peak I has Ca2+-independent, cGMP-specific phosphodiesterase activity and Peak II has cGMP-stimulated cyclic nucleotide phosphodiesterase activity. Peak I hydrolyzes cGMP with hyperbolic kinetics and demonstrates a Km of 23 microM. Peak II hydrolyzes cGMP with hyperbolic kinetics but hydrolyzes cAMP with slightly sigmoidal kinetics and demonstrates Km values of 54 +/- 0.7 microM cGMP and 38 +/- 6 microM cAMP. Cyclic AMP and cGMP are competitive inhibitors of each other's hydrolysis, suggesting that these nucleotides may be hydrolyzed at the same catalytic site. Micromolar concentrations of cGMP cause a 5-fold stimulation of the hydrolysis of subsaturating concentrations of cAMP by the Peak II phosphodiesterase. Half-maximal activation occurs at 0.5 microM cGMP and the result of activation is a decrease in the apparent Km for cAMP. Stimulation of the hydrolysis of subsaturating concentrations of cGMP by cAMP was also detected; however, cAMP is a less potent activator of the enzyme than cGMP. Cyclic AMP causes a 1.5-fold stimulation of cGMP hydrolysis and half-maximal activation occurs at 2.5 microM cAMP.  相似文献   

12.
Soluble phosphodiesterase (EC 3.1.4.1) activity is 3-5-fold lower in superficial colonic epithelial cells compared to that in cells isolated from the lower colonic crypt. Higher phosphodiesterase activity in lower crypt cells is correlated with a 5-fold higher rate of incorporation of [3H]thymidine into DNA in these cells. DEAE-cellulose chromatography of the soluble fraction of superficial and proliferative colonic epithelial cells resulted in separation of three enzyme forms: (1) fraction I, an enzyme which hydrolyzes both cAMP and cGMP with high affinity (apparent Km cAMP = 5 +/- 1 microM, Km cGMP = 2.5 +/- 0.5 microM) and is stimulated 3-6-fold by Ca2+ plus calmodulin; (2) fraction II, a form which hydrolyzes both cAMP and cGMP with low affinity (S0.5 cAMP = 52 +/- 7 microM, S0.5 cGMP = 17 +/- 4 microM), exhibits positive copperativity with respect to substrate and shows cGMP stimulation of cAMP hydrolysis and (3) fraction III, a cAMP-specific form which exhibits biphasic kinetics, a low Km for cAMP (Km cAMP = 5 +/- 1 microM) and does not hydrolyze cGMP. The pattern of distribution of phosphodiesterase activities on DEAE-cellulose was similar in superficial and proliferative colonic epithelial cells. The higher specific activity in proliferative cells was reflected in higher activities of each of the three chromatographically distinct forms of the enzyme. In contrast to epithelial cells, the soluble fraction of homogenates of the submucosa and supporting cells exhibited phosphodiesterase forms I and II and was lacking in the form corresponding to fraction III of epithelial cells.  相似文献   

13.
Effect of native and synthetic atrial natriuretic factor on cyclic GMP   总被引:24,自引:0,他引:24  
Mammalian atrial cardiocyte granules contain a potent natriuretic and diuretic peptide. Since cGMP appears to be involved in the modulation of cholinergic and toxin-induced sodium transport, we examined the effect of atrial natriuretic factor (ANF) on this nucleotide. Atrial but not ventricular extracts elicited approximately a 28-fold increase of urinary cGMP excretion parallel to the natriuresis and diuresis. The atrial extracts also elevated cGMP levels in kidney slices and primary cultures of renal tubular cells. The effect of ANF on cGMP appeared to be specific since antibodies which were capable of inhibiting the ANF-induced diuresis also suppressed cGMP excretion. Furthermore, during the course of ANF purification, the ANF-induced increase of cGMP production by kidney cells paralleled the heightened specific natriuretic activity of the atrial factor. A synthetic peptide (8-33)-ANF similarly increased urinary plasma and kidney tubular cGMP levels. The exact mechanism of action of ANF on cGMP remains to be elucidated, but indirect inhibition of cGMP phosphodiesterase appears to participate in its effect.  相似文献   

14.
The action of antimicrotubular drugs (colchicine, vinblastine and copper) on the osmotic water flow through the wall of the urinary bladder of Rana temporaria has been studied. The osmotic gradient was made by five- or tenfold dilution of the internal Ringer solution. The water flow was estimated gravimetrically. The water flow was induced by pituitrin (50 milliunits/ml), cyclic AMP (cAMP, 0.5-10(-3) M) and nystatine (3.5-10(-5) M). Pituitrin and cAMP and all the antimicrotubular drugs were added from the serosal surface of the bladder. Nystatine was introduced with the help of a fixed polyethylene tube. Preincubation with colchicine lasted 4 hours and that with vinblastine and copper (CuSO4), 1 hour. The drug concentrations varied between 10(-5)--10(-4) M. All the drugs studied showed a significant inhibitory effect toward pituitrin. The action of cAMP on the water flow was seen inhibited in the presence of colchicine and copper. The nystatine induced water flow was supressed by copper, colchicine being in this case inactive. A conclusion is drawn that the inhibition of cAMP formation does not cause a decreased pituitrine effect in the presence of antimicrotubular drugs. It has been assumed that the microtubules may be involved in the directed water flow within the cell.  相似文献   

15.
Prostaglandins (PGs) modulate osmotic water flow in amphibian urinary bladders. Gas chromatographic analysis of prostaglandin precursors in bladders showed that arachidonic acid represented 13.0 +/- 0.6% and eicosapentaenoic acid 4.3 +/- 0.1% of the total fatty acid content. The effects of PGE2 and PGE3 on basal and arginine vasotocin (AVT) stimulated water flow were compared. Control water flow (1.1 +/- 0.2 mg/min) was increased to 4.6 +/- 0.3 mg/min with AVT (10(-6)M) present. PGE2 (10(-6)M) inhibited both basal and AVT stimulated water flow. In contrast, PGE3 (10(-6)M) stimulated basal water flow and further increased AVT stimulated water flow. Basal adenylate cyclase activity (ACA, 59 +/- 0.3 pmol cyclic AMP/mg protein/10 min) was stimulated by the addition of AVT in the absence or presence of exogenous guanosine 5' triphosphate (GTP, 10(-5)M). Both PGE2 and PGE3 stimulated basal ACA in the absence, but not in the presence of GTP. In the absence of exogenous GTP, PGE2 increased AVT stimulated ACA, whereas PGE3 decreased it. Both prostaglandins inhibited AVT stimulation when GTP was added. The effects of PGE2, PGE3 and AVT on tissue cyclic AMP levels in whole urinary bladders were similar to the effects seen on ACA in the absence of exogenous GTP. The contrasting effects of PGE2 and PGE3 on control water flow appear distinct from their similar effects on ACA. However, PGE2 and PGE3 may regulate AVT stimulation through mechanisms involving cyclic AMP.  相似文献   

16.
We have found that atrial natriuretic factor (ANF) has a profound effect on testicular cells in altering intracellular cyclic nucleotide levels as well as progesterone secretion. Using clonal cultured Leydig tumor cells we found that 1 X 10(-8)M ANF caused a two thousand-fold elevation in the accumulation of cellular cGMP and inhibited cAMP in treated cells by more than 90% as compared to the controls. ANF (1 X 10(-8)M) also significantly inhibited gonadotropin-stimulated accumulation of cAMP in response to bovine luteinizing hormone (bLH) or human chorionic gonadotropin (hCG). Gonadotropin-stimulated progesterone secretion was inhibited by ANF (1 X 10(-10) - 1 X 10(-9)M) in these cultured Leydig tumor cells. Approximately 50% inhibition of progesterone secretion was observed at the peptide concentration of 1 X 10(-9) M.  相似文献   

17.
We have compared the response of proton and water transport to oxytocin treatment in isolated frog skin and urinary bladder epithelia to provide further insights into the nature of water flow and H+ flux across individual apical and basolateral cell membranes. In isolated spontaneous sodium-transporting frog skin epithelia, lowering the pH of the apical solution from 7.4 to 6.4, 5.5, or 4.5 produced a fall in pHi in principal cells which was completely blocked by amiloride (50 microM), indicating that apical Na+ channels are permeable to protons. When sodium transport was blocked by amiloride, the H+ permeability of the apical membranes of principal cells was negligible but increased dramatically after treatment with antidiuretic hormone (ADH). In the latter condition, lowering the pH of the apical solution caused a voltage-dependent intracellular acidification, accompanied by membrane depolarization, and an increase in membrane conductance and transepithelial current. These effects were inhibited by adding Hg2+ (100 microM) or dicyclohexylcarbodiimide (DCCD, 10(-5) M) to the apical bath. Net titratable H+ flux across frog skin was increased from 30 +/- 8 to 115 +/- 18 neq.h-1.cm-2 (n = 8) after oxytocin treatment (at apical pH 5.5 and serosal pH 7.4) and was completely inhibited by DCCD (10(-5) M). The basolateral membranes of the principal cells in frog skin epithelium were found to be spontaneously permeable to H+ and passive electrogenic H+ transport across this membrane was not affected by oxytocin. Lowering the pH of the basolateral bathing solution (pHb) produced an intracellular acidification and membrane depolarization (and an increase in conductance when the normal dominant K+ conductance of this membrane was abolished by Ba2+ 1 mM). These effects of low pHb were blocked by micromolar concentrations of heavy metals (Zn2+, Ni2+, Co2+, Cd2+, and Hg2+). Lowering pHb in the presence of oxytocin (50 mU/ml) produced a transepithelial current (3 microA.cm-2 at pHb 5.5) which was blocked by 100 microM of Hg2+, Zn2+, or Ni2+ at the basolateral side, and by DCCD (10(-5) M) or Hg2+ (100 microM) from the apical side. The net hydroosmotic water flux (JH2O) induced by oxytocin in frog bladder sacs was blocked by inhibitors of H(+)-adenosine triphosphatase (ATPase). Diethylstilbestrol (DES 10(-5) M), oligomycin (10(-8) M), and DCCD (10(-5) M) prevented JH2O when present in the lumen. These effects cannot be attributed to inhibition of metabolism since cyanide (10(-4) M), or 2-deoxyglucose (10(-3) M) had no effect on JH2O.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Electron and confocal microscopy, using immunocytochemical methods, was employed to assess osmotic water permeability of the frog (Rana temporaria) urinary bladder during transcellular water transport, induced by antidiuretic hormone (ADH) or by wash-out of autacoids from serosal, ADH-free Ringer solution. The increase of osmotic water permeability of the urinary bladder was accompanied by relevant ultrastructural changes, the most remarkable being: (1) the appearance of aggregates of intramembranous particles in the apical membrane of granular cells, and the extent of the membrane area covered by the aggregates proportional to that of the water flow; (2) redistribution of actin filaments in the cytoplasm of granular cells; judging from the anti-actin label density, the number of actin filaments in the apical region of cytoplasm was reduced by 2.5–4 times compared with normal; (3) a decrease in the total electron density of the cytoplasm due to the increased water content of granular cells.  相似文献   

19.
T Iwata  J Vaughn  E D Frohlich  F E Cole 《Peptides》1991,12(2):301-307
We investigated regulation of atrial natriuretic factor (ANF)-stimulated cellular cGMP accumulation (ANF-s-cGMP) in an ANF-responsive human renal cell line, SK-NEP-1. Dose-response data indicated that the EC50 for ANF(99-126) was 1.1 x 10(-9) M. Brain natriuretic peptide (10(-6) M) increased cGMP to a level indistinguishable from that of ANF (10(-6) M). [Met-(O)]ANF was only half as potent as ANF, and atriopeptin I (10(-6) M) did not increase cGMP over basal levels. Preincubation of SK-NEP-1 cells with ANF, but not atriopeptin I (API), for two hours or longer, caused a concentration-dependent down-regulation of ANF-s-cGMP. Phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, and A23187 and its 4-bromo derivative, calcium ionophores, inhibited ANF-s-cGMP in a dose-dependent manner. A23187 inhibition was calcium dependent and promoted net cGMP degradation. Thirty-six hour preincubation with PMA, a procedure used to down-regulate PKC, abolished acute PMA inhibition of ANF-s-cGMP without having an effect on ANF-s-cGMP or on 4-bromo-A23187 inhibition thereof. These data indicate that PKC activation specifically inhibited ANF-s-cGMP but that PKC was not required for ANF-s-cGMP in SK-NEP-1 cells. Thus structurally related ANF peptides, protein kinase C (PKC) activators, calcium ionophores are potential modulators of ANF-s-cGMP in cells from this human renal cell line.  相似文献   

20.
Effects of fatty acids, prostaglandins, and phospholipids on the activity of purified cGMP-stimulated cyclic nucleotide phosphodiesterase from calf liver were investigated. Prostaglandins A2, E1, E2, F1 alpha, and F2 alpha, thromboxane B2, and most phospholipids were without effect; lysophosphatidylcholine was a potent inhibitor. Several saturated fatty acids (carbon chain length 14-24), at concentrations up to 1 mM, had little or no effect on hydrolysis of 0.5 microM [3H]cGMP or 0.5 microM [3H]cAMP with or without 1 microM cGMP. In general, unsaturated fatty acids were inhibitory, except for myristoleic and palmitoleic acids which increased hydrolysis of 0.5 microM [3H]cAMP. The extent of inhibition by cis-isomers correlated with the number of double bonds. Increasing concentrations of palmitoleic acid from 10 to 100 microM increased hydrolysis of [3H]cAMP with maximal activation (60%) at 100 microM; higher concentrations were inhibitory. Palmitoleic acid inhibited cGMP hydrolysis and cGMP-stimulated cAMP hydrolysis with IC50 values of 110 and 75 microM, respectively. Inhibitory effects of palmitoleic acid were completely or partially prevented by equimolar alpha-tocopherol. Palmitelaidic acid, the trans isomer, had only slightly inhibitory effects. The effects of palmitoleic acid (100 microM) were dependent on substrate concentration. Activation was maximal with 1 microM [3H]cAMP and was reduced with increasing substrate; with greater than 10 microM cAMP, palmitoleic had no effect. Inhibition of cGMP hydrolysis was maximal at 2.5 microM cGMP and was reduced with increasing cGMP; at greater than 100 microM cGMP palmitoleic acid increased hydrolysis slightly. Palmitoleic acid did not affect apparent Km or Vmax for cAMP hydrolysis, but increased the apparent Km (from 17 to 60 microM) and Vmax for cGMP hydrolysis with little or no effect on the Hill coefficient for either substrate. These results suggest that certain hydrophobic domains play an important role in modifying the catalytic specificity of the cGMP-stimulated phosphodiesterase for cAMP and cGMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号