首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The state of skin microcirculation system has been studied in healthy volunteers aged from 20 to 77, using laser Doppler flowmetry. To reveal the reaction of microvascular bed in response to short-term ischemia, occlusive test has been carried out. During experiment the age-induced reduction of microcirculation index has been observed at rest. In response to stopping occlusion the 3.5--4-aliquot increase of microcirculation index has been revealed during reactive post-occlusive hyperemia in all age groups. The data obtained suggest maintenance of high reserve resources of skin microcirculation in ageing in response to ischemia.  相似文献   

2.
The mechanisms of thermal regulation of skin blood flow during local heating to 35, 40 and 45 'C have been studied by the method of laser Doppler flowmetry in healthy volunteers. To estimate the state of microvascular bed the continuous wavelet-transform spectral analysis has been used. The amplitudes of fluxmotions in the range of blood flow active modulation significantly increase during local heating to 35 degrees C. The amplitudes of blood flow oscillations in the ranges of cardiorhythm and respiratory rhythm increase during local heating to 40 degrees C. The high amplitude oscillations in the range of myogenic activity are maintained. The amplitude of oscillations in the range of endothelial activity distinctly decreases and the oscillations in the range of neurogenic activity are inhibited. Local heating to 45 degrees C results in a significant decreasing of the oscillation amplitudes in the range of myogenic activity, and the amplitudes of cardio- and respiratory spectral components amount to their peak values among the temperatures of local heating under study.  相似文献   

3.
Exposure to microgravity or simulated microgravity is known to affect regulatory function in autonomic nervous system. With regard to thermoregulation, simulated microgravity impairs sweating and induces lower skin and higher internal temperatures during physical work. During supine rest after HDT bed rest, the internal temperatures were reported to be higher than those of pre-HDT bed rest in some studies but not in others. There is no report about the dynamic changes of skin blood flow during 14-day HDT bed rest. The process of HDT bed-rest deconditioning on the function of the thermoregulatory system is virtually unknown. The HDT induces an immediate cephalad fluid shift which would inhibit the sympathetic outflow through the arterial and cardiopulmonary baroreflexes, which may increase the skin blood flow. On the other hand, prolonged HDT bed rest induces dehydration, which will increase sympathetic outflow through cardiopulmonary baroreceptor modulation. Both sympathetic activation and dehydration itself will decrease skin blood flow. It seems probable that the general effect on skin blood flow may reverse along the HDT bed rest. However, the dynamic characters of skin blood flow and body temperature during the HDT bed rest have not been studied thoroughly. Therefore, the purpose of present study was to investigate the changes of skin blood flow and body temperature during 14 days HDT bed rest.  相似文献   

4.
Huang SS  Tsai MC  Chih CL  Hung LM  Tsai SK 《Life sciences》2001,68(9):1057-1065
Although vasomotion has been considered a feature of the microvascular bed under physiological conditions, it has also been observed following hypotension in several tissues. In this work, 158 mesenteric microvessels of 36 rats were investigated quantitatively in normovolemic and hemorrhaged animals, focussing on diameter changes, particularly vasomotion incidence and characteristics. The femoral arteries of Wistar rats (body weight BW = 188 +/- 23 g, mean +/- SD) anesthetized with pentobarbital were cannulated for arterial pressure (AP) monitoring and blood withdrawal. The protocol consisted of 15 min control and 30 min of hemorrhagic hypotension (AP = 52 +/- 5 mmHg, hemorrhaged vol. = 17 +/- 4 ml/kg BW). During control normovolemic conditions, analysis of mesenteric microcirculation using intravital videomicroscopy revealed neither arteriolar nor venular vasomotion. During hemorrhagic hypotension (HH) microvascular blood flow reduced to 25% of control. While venules did not show diameter changes during HH, arterioles contracted to 85 +/- 20% of control and arteriolar vasomotion appeared in 42% of the animals and 27% of the arterioles. The amplitude of arteriolar diameter change during HH relative to mean diameter and to control diameter averaged 65 +/- 24% (range: 32-129%) and 41 +/- 10% (range: 25-62%), respectively. Vasomotion analysis showed two major frequency components: 1.7 +/- 0.8 and 7.0 +/- 5.2 cycles/min. Arterioles showing vasomotion had a mean control diameter larger than the remaining arterioles and showed the largest constriction during HH. We conclude that hemorrhagic hypotension does not change venular diameter but induces arteriolar constriction and vasomotion in rat mesentery. This activity is expressed as slow waves with high amplitude and fast waves with low amplitude, and is dependent on vessel size.  相似文献   

5.
Resetting of arterial and arteriolar wall structural components have been studied in the white rat kidney glomeruli after experimental ischemia (30 min, 1-3 h) without blood flow recovery and with the following recirculation for 3-30 days. The experiments have established that acute renal ischemia caused by the vascular leg ligation for 30-60 min without the following blood flow recovery results in slight microstructural alterations of arterial and arteriolar wall elements. With increased ischemia duration (2-3 h) pathological changes become more prominent and separation of vascular endothelial cells and defibering of the internal elastic membrane take place. In transitory (30-60 min) ischemia of the remaining kidney (one kidney is removed) three days later desquamation of endothelial cells occurs in some arteries. Thinning of arterial walls and overstrain of internal elastic membrane are observed. However, later on (in 30 days) short-term ischemia (30 min) is followed by complete recovery of structural components of arterial and arteriolar walls. In more durable ischemia (2-3 h) of the remaining kidney the recovered blood flow causes marked destructive life-threatening changes in vascular walls.  相似文献   

6.
Study of peripheral microhaemodynamics was carried out with laser Doppler flowmetry in healthy volunteers of different age groups. The ageing changes in the state of the skin peripheral blood flow, in the functioning of separate links and regulatory systems ofmicrovascular bed have been estimated in terms of relative entropy and fractal dimension values. The revealed significant age-dependent decrease of relative entropy values in the respiratory rhythm ranges, the neurogenic and myogenic activities yielded some evidence concerning the reduction of the microcirculation system chaotic changes within these frequency ranges during the ageing. The significant increase of fractal dimension values in the ranges of cardio-rhythm and the endothelial activity in the oldest group with the mean age of 77 years indicated that the structural complexity of the oscillations in these frequency ranges increased during ageing.  相似文献   

7.
We used laser Doppler flowmetry with wavelet analysis of blood flow oscillations, computer capillaroscopy, and thermometry of the nail bed in 30 subjects to show an important role of the oscillatory circuit in the regulation of capillary hemodynamics, number of functioning capillaries, and linear and volumetric velocity of blood flow. The number of functioning capillaries is regulated by oscillations of myogenic and sensory peptidergic origin. The appearance of sensory oscillations, especially high-amplitude oscillations, is an adaptive neurotrophic mechanism that significantly increases the number of functioning capillaries and intensity of blood flow from arterioles to capillaries. The linear velocity of blood flow depends on both the tone of microvessels and changes in the dynamic component of blood pressure. Under conditions of skin hypoperfusion, the mean linear velocity of capillary blood flow may be inversely related to the extracapillary perfusion, including the amplitude of heart rate (A h) and oscillations of the tone of precapillary sphincters, whereas under conditions of vasodilation and increased skin perfusion, it may be inversely related to the amplitude of arteriolar oscillations of endothelial or neurogenic sympathetic origin (A maxe + n) and the shunting index. The A h affects the linear velocity of blood flow in the arterial part of capillaries, whereas the A maxe + n influences the same factor in the venous part. The contribution of oscillations to the regulation of the linear velocity varies depending on the perfusion and skin temperature. The resultant tone of distributing microvessels is determined by the competition between the stationary and oscillatory components. In addition to changes in the amplitude, the frequency of vasomotions may also be important. The regulatory importance of the oscillatory circuit is increased with a decrease in the skin blood flow.  相似文献   

8.
Coronary blood flow in the subendocardium is preferentially increased by adenosine but is redistributed to the subepicardium during ischemia in association with coronary pressure reduction. The mechanism for this flow redistribution remains unclear. Since adenosine is released during ischemia, it is possible that the coronary microcirculation exhibits a transmural difference in vasomotor responsiveness to adenosine at various intraluminal pressures. Although the ATP-sensitive K(+) (K(ATP)) channel has been shown to be involved in coronary arteriolar dilation to adenosine, its role in the transmural adenosine response remains elusive. To address these issues, pig subepicardial and subendocardial arterioles (60-120 micrometer) were isolated, cannulated, and pressurized to 20, 40, 60, or 80 cmH(2)O without flow for in vitro study. At each of these pressures, vessels developed basal tone and dilated concentration dependently to adenosine and the K(ATP) channel opener pinacidil. Subepicardial and subendocardial arterioles dilated equally to adenosine and pinacidil at 60 and 80 cmH(2)O luminal pressure. At lower luminal pressures (i.e., 20 and 40 cmH(2)O), vasodilation in both vessel types was enhanced. Enhanced vasodilatory responses were not affected by removal of endothelium but were abolished by the K(ATP) channel inhibitor glibenclamide. In a manner similar to reducing pressure, a subthreshold dose of pinacidil potentiated vasodilation to adenosine. In contrast to adenosine, dilation of coronary arterioles to sodium nitroprusside was independent of pressure changes. These results indicate that coronary microvascular dilation to adenosine is enhanced at lower intraluminal pressures by selective activation of smooth muscle K(ATP) channels. Since microvascular pressure has been shown to be consistently lower in the subendocardium than in the subepicardium, it is likely that the inherent pressure gradient in the coronary microcirculation across the ventricular wall may be an important determinant of transmural flow in vivo during resting conditions or under metabolic stress with adenosine release.  相似文献   

9.
Age-related changes in peripheral microcirculation were studied using laser Doppler flowmetry in 60 apparently healthy subjects. The response of microcirculation to short-term ischemia was studied using the occlusion test. Changes in the amplitude of the peripheral blood flow oscillations were determined using time-amplitude analysis based on continuous adaptive wavelet filtration. The oscillation amplitude in the frequency range of the heart rate was found to reach the maximum with a delay after the removal of the occlusion, whereas in the range of the respiratory rhythm, no delay was observed. The hyperemic response to short-term ischemia is assumed to develop under the predominant influence of the arterial-arteriolar component, whereas the dynamics of amplitude oscillations in the range of the respiratory rhythm is a result of the devastation of the venular component after removal of occlusion. In response to short-term ischemia, the maximum oscillation amplitudes of myogenic, neurogenic, and endothelial rhythms decreased with age, which demonstrates the restriction of the regulatory control of the peripheral blood flow by the corresponding systems.  相似文献   

10.
Erythropoietin (EPO) has been proposed as a novel cytoprotectant in ischemia-reperfusion (I/R) injury of the brain, heart, and kidney. However, whether EPO exerts its protection by prevention of postischemic microcirculatory deterioration is unknown. We have investigated the effect of EPO on I/R-induced microcirculatory dysfunctions. We used the mouse dorsal skinfold chamber preparation to study nutritive microcirculation and leukocyte-endothelial cell interaction in striated muscle of the dorsal skinfold by in vivo fluorescence microscopy before 3 h of ischemia and during 5 days of reperfusion. Animals were pretreated with EPO (5,000 U/kg body wt) 1 or 24 h before ischemia. Vehicle-treated I/R-injured animals served as controls. Additional animals underwent sham operation only or were pretreated with EPO but not subjected to I/R. I/R significantly (P < 0.05) reduced functional capillary density, increased microvascular permeability, and enhanced venular leukocyte-endothelial cell interaction during early reperfusion. These findings were associated with pronounced (P < 0.05) arteriolar constriction and diminution of blood flow during late reperfusion. Pretreatment with EPO induced EPO receptor and endothelial nitric oxide synthase expression at 6 h of reperfusion (P < 0.05). In parallel, EPO significantly (P < 0.05) reduced capillary perfusion failure and microvascular hyperpermeability during early reperfusion and arteriolar constriction and flow during late reperfusion. EPO pretreatment substantially (P < 0.05) diminished I/R-induced leukocytic inflammation by reducing the number of rolling and firmly adhering leukocytes in postcapillary venules. EPO applied 1 h before ischemia induced angiogenic budding and sprouting at 1 and 3 days of reperfusion and formation of new capillary networks at 5 days of reperfusion. Thus our study demonstrates for the first time that EPO effectively attenuates I/R injury by preserving nutritive perfusion, reducing leukocytic inflammation, and inducing new vessel formation.  相似文献   

11.
The characteristics of the microcirculation in the forearm skin of 29 apparently healthy male volunteers were studied in acute hypoxia and during intermittent hypoxic training (IHT) using computer laser Doppler flowmetry. It was shown that short-term exposure of apparently healthy subjects to simulated acute hypoxia optimized the microcirculation owing to sympathetic innervation and concomitant rearrangement of microvascular tone regulation (activation of skin perfusion and reduction of blood flow through arteriovenular shunts when the neurogenic tone component increases). A second (placebo-controlled) series of experiments showed that long-term hypoxic preconditioning (20 IHT sessions) facilitated fixing of the adaptive dynamic rearrangements aimed at microcirculation improvement. The microvasculature response during acute hypoxia and a course of IHT depends on the initial sensitivity of subjects to simulated hypoxia. Significant perfusion enhancement in the tissues studied and microvascular tone normalization were observed in the subjects that were initially sensitive to hypoxia.  相似文献   

12.
Prolonged bed rest may cause changes in the autonomic nervous system that are related to cognition and emotion. This study adopted an emotional flanker task to evaluate the effect of 45 days -6° head-down bed rest (HDBR) on executive functioning in 16 healthy young men at each of six time points: the second-to-last day before the bed rest period, the eleventh, twentieth, thirty-second and fortieth day during the bed rest period, and the eighth day after the bed rest period. In addition, self-report inventories (Beck Anxiety Inventory, BAI; Beck Depression Inventory, BDI; Positive Affect and Negative Affect Scale, PANAS) were conducted to record emotional changes, and the participants’ galvanic skin response (GSR), heart rate (HR) and heart rate variability (HRV) were assessed as measures of physiological activity. The results showed that the participants’ reaction time on the flanker task increased significantly relative to their responses on the second-to-last day before the period of bed rest, their galvanic skin response weakened and their degrees of positive affect declined during the bed rest period. Our results provide some evidence for a detrimental effect of prolonged bed rest on executive functioning and positive affect. Whether this stems from a lack of aerobic physical activity and/or the effect of HDBR itself remains to be determined.  相似文献   

13.
In 261 girls year-to-year morphofunctional transformations of spatial composition of the skin microcirculatory bed have been studied at rest and after a dynamic local load. By means of biomicroscopy main regularities in development of the skin capillary network have been revealed in the nail torus in the postnatal ontogenesis. Formation of the microvessels reactivity during various age periods and maturation of mechanisms of the compensatory-adaptive reactions are connected with formation of the definitive composition of the microcirculatory bed, that in girls corresponds to 11-12 years. Qualitative transformations in the skin capillary network bring certain quantitative changes in the structural microcirculatory parameters--increasing diameter of microvessels and increasing density of functioning capillaries.  相似文献   

14.
The effect of post-hemotransfusion protein fractions on blood pressure, microcirculation and physiologically active substances has been studied in stimulated blood replacement by homologous animal blood. The in vivo and in vitro experiments have revealed that subfraction of hemotransfusion plasma macromolecular proteins has a prominent antihypertensive effect, leading to blood flow slowing in the microvascular bed. Hemotransfusion plasma proteins possess high serotonin-releasing activity. The involvement of blood proteins and physiologically active substances into the generation of the recepient's response to homologous blood transfusion from several donors and its role in the genesis of post-transfusion complications are discussed.  相似文献   

15.
The effects of infusion of arginine vasopressin (20 mU.kg-1.min-1) on coronary blood flow and the proportion of the coronary microvasculature perfused was studied in rabbit myocardium. Fluorescein isothiocyanate--dextran was injected into anesthetized open-chest rabbits to identify the perfused vessels and an alkaline phosphatase stain was employed to locate the total microvasculature. Coronary blood flow (radioactive microspheres) was studied in separate groups of rabbits. Vasopressin infusion caused bradycardia (243 +/- 19 to 165 +/- 22 beats/min, mean +/- SD) and an increase in mean blood pressure (92 +/- 18 to 104 +/- 12 mmHg) (1 mmHg = 133.32 Pa). Coronary blood flow decreased significantly with vasopressin from 209 +/- 68 to 97 +/- 36 mL.min-1.100 g-1. The proportion of the arteriolar bed per millimeter squared perfused decreased significantly after vasopressin from 54 +/- 13 to 44 +/- 21%, while the percentage of capillaries per millimeter squared increased significantly from 57 +/- 6 to 67 +/- 11%. There were no subepicardial versus subendocardial differences in any measured parameter. Thus, both coronary blood flow and the proportion of the arteriolar bed perfused decreased with vasopressin. However, compensation occurred in that the proportion of capillaries perfused increased. This indicated an independent level of control of the coronary arteriolar and capillary beds. These microvascular changes may help to maintain oxygen supply-demand balance with vasopressin in the heart.  相似文献   

16.
We test the hypothesis that microvascular endothelial cells may undergo apoptosis in response to acute pulmonary venous hypertension. The isolated rabbit lungs were perfused in situ for 4 h with left atrial pressure of 0, 10, or 20 mmHg at a constant blood flow. Edema formation was monitored by lung weight gain. To assay for apoptosis, we performed agarose gel electrophoresis of DNA, in situ nick end labeling of DNA strand breaks, and electron microscopy. We also examined the levels of expression of Bcl-2, a suppressor of apoptosis, in microvascular endothelial cells using an immunohistochemical technique. In a vascular pressure-dependent fashion, we found apoptosis in endothelial cells of alveolar septal capillaries, as well as expression of Bcl-2 in arteriolar and venular endothelial cells. We conclude that acute pulmonary venous hypertension induces apoptosis in capillary endothelial cells but not in arteriolar and venular endothelial cells, suggesting that microvascular endothelial cell apoptosis is dependent on the levels of Bcl-2 expression and influences the formation or resolution of acute hydrostatic lung edema.  相似文献   

17.
Echocardiography was used to study the parameters of cardiodynamics, systemic hemodynamics, left ventricular morphology and functioning, phase analysis of cardiac activity, and rheological blood properties in highly skilled expert swimmers. The relationship between different levels of blood circulation was established. A close correlation between the blood flow at rest and arterial pressure was found to contribute to the optimization of microvascular pressure and shear stress in accordance with body demands.  相似文献   

18.
We tested the hypothesis that 60 days of head-down bed rest (HDBR) would affect cerebrovascular autoregulation and that this change would be correlated with changes in tolerance to the upright posture. Twenty-four healthy women (32 +/- 4 yrs) participated in a 60-d bed rest study at the MEDES Clinic in Toulouse, France. End tidal CO2 (ETCO2), continuous blood pressure (BP), middle cerebral artery (MCA) velocity and time to presyncope (endpoint) were measured during an orthostatic tolerance test conducted before/after bed rest. Given the large range of change in tolerance even within assigned countermeasure groups, we separated subjects for this analysis on the basis of the change in endpoint (Delta endpoint) pre- to post-bed rest. Autoregulation and CO2 responsiveness were evaluated on a different day from a two-breath test with intermittent hypercapnic exposure. Autoregressive moving average (ARMA) modeled the two confounding inputs, BP and CO2, on cerebrovascular blood flow. The cerebrovascular resistance index (CVRi) was expected to decrease following a decrease in BP at the MCA to assist in maintenance of cerebral blood flow. Subjects with the smallest Delta endpoint after bed rest had a 78% increase in the gain of the BP --> CVRi response. Meanwhile, the groups with greater decline in orthostatic tolerance post-HDBR had no change in the gain of this response. ETCO2 was lower overall following HDBR, decreasing from 41.8 +/- 3.4 to 40.2 +/- 3.0 in supine rest, 37.9 +/- 3.4 to 33.3 +/- 4.0 in early tilt, and 29.5 +/- 4.4 to 27.1 +/- 5.1 at pre-syncope. There was however, higher MCA velocity at any ETCO2 for post- compared to pre-HDBR. In summary, changes in autoregulation were found only in those subjects who had the smallest change from pre- to post-HDBR orthostatic tolerance. The changes may assist in buffering changes in cerebral blood flow during orthostatic hypotension post-HDBR. The reduction in ETCO2 after bed rest might be due to a change in chemoreceptor response to blood CO2, but the cerebrovascular system seems to have completely compensated.  相似文献   

19.
There is considerable support for the concept that insulin-mediated increases in microvascular blood flow to muscle impact significantly on muscle glucose uptake. Since the microvascular blood flow increases with insulin have been shown to be nitric oxide-dependent inhibition of cGMP-degrading phosphodiesterases (cGMP PDEs) is predicted to enhance insulin-mediated increases in microvascular perfusion and muscle glucose uptake. Therefore, we studied the effects of the pan-cGMP PDE inhibitor zaprinast on the metabolic and vascular actions of insulin in muscle. Hyperinsulinemic euglycemic clamps (3 mU·min(-1)·kg(-1)) were performed in anesthetized rats and changes in microvascular blood flow assessed from rates of 1-methylxanthine metabolism across the muscle bed by capillary xanthine oxidase in response to insulin and zaprinast. We also characterized cGMP PDE isoform expression in muscle by real-time PCR and immunostaining of frozen muscle sections. Zaprinast enhanced insulin-mediated microvascular perfusion by 29% and muscle glucose uptake by 89%, while whole body glucose infusion rate during insulin infusion was increased by 33% at 2 h. PDE2, -9, and -10 were the major isoforms expressed at the mRNA level in muscle, while PDE1B, -9A, -10A, and -11A proteins were expressed in blood vessels. Acute administration of the cGMP PDE inhibitor zaprinast enhances muscle microvascular blood flow and glucose uptake response to insulin. The expression of a number of cGMP PDE isoforms in skeletal muscle suggests that targeting specific cGMP PDE isoforms may provide a promising avenue for development of a novel class of therapeutics for enhancing muscle insulin sensitivity.  相似文献   

20.
A novel methodology of quantitative estimation of the information value in microvascular networks is proposed. The methodology has been developed on the basis of the results of wavelet analysis of skin blood flow oscillations measured by means of laser Doppler flowmetry (LDF) in 30 healthy subjects and 56 patients with hand diseases or consequences of hand injuries. The method is based on the calculation of the relative indices of information preservation, dominance of the preserved information, and information effectiveness. The deviation from the multistable information regimen is the largest in the case of resonance oscillations: the total information quantity is significantly decreased; however, the preservation of dominant information and its effectiveness are improved. The preservation of trophic myogenic information predominates upon reduction of sympathetic influences. An increase in the number of information channels increases only the information quantity, whereas the degree of its preservation varies. Sensory peptidergic nerve fibers are activated in response to local heating of the dorsal forearm skin to 34°C. This information is the most effective at the beginning of the heating, when the blood flow increases to a plateau. The blood flow oscillations represented in the wavelet spectrum of microcirculatory oscillations serve as operators based on effective information. These oscillations not only play the hemodynamic role, but also carry information in microvascular networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号