首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dimeric alamethicin analog with lysine at position 18 in the sequence (alm-K18) was previously shown to form stable anion-selective channels in membranes at pH 7.0 [Starostin, A. V., R. Butan, V. Borisenko, D. A. James, H. Wenschuh, M. S. Sansom, and G. A. Woolley. 1999. Biochemistry. 38:6144-6150]. To probe the charge state of the conducting channel and how this might influence cation versus anion selectivity, we performed a series of single-channel selectivity measurements at different pH values. At pH 7.0 and below, only anion-selective channels were found with P(K(+))/P(Cl(-)) = 0. 25. From pH 8-10, a mixture of anion-selective, non-selective, and cation-selective channels was found. At pH > 11 only cation-selective channels were found with P(K(+))/P(Cl(-)) = 4. In contrast, native alamethicin-Q18 channels (with Gln in place of Lys at position 18) were cation-selective (P(K(+))/P(Cl(-)) = 4) at all pH values. Continuum electrostatics calculations were then carried out using an octameric model of the alm-K18 channel embedded in a low dielectric slab to simulate a membrane. Although the calculations can account for the apparent pK(a) of the channel, they fail to correctly predict the degree of selectivity. Although a switch from cation- to anion-selectivity as the channel becomes protonated is indicated, the degree of anion-selectivity is severely overestimated, suggesting that the continuum approach does not adequately represent some aspect of the electrostatics of permeation in these channels. Side-chain conformational changes upon protonation, conformational changes, and deprotonation caused by permeating cations and counterion binding by lysine residues upon protonation are considered as possible sources of the overestimation.  相似文献   

2.
The peptide alamethicin self-assembles to form helix bundle ion channels in membranes. Previous macroscopic measurements have shown that these channels are mildly cation-selective. Models indicate that a source of cation selectivity is a zone of partial negative charge toward the C-terminal end of the peptide. We synthesized an alamethicin derivative with a lysine in this zone (replacing the glutamine at position 18 in the sequence). Microscopic (single-channel) measurements demonstrate that dimeric alamethicin-lysine18 (alm-K18) forms mildly anion-selective channels under conditions where channels formed by the parent peptide are cation-selective. Long-range electrostatic interactions can explain the inversion of ion selectivity and the conductance properties of alamethicin channels.  相似文献   

3.
Cyclic nucleotide-gated (CNG) channels play a critical role in olfactory and visual transduction. Site-directed mutagenesis and inside-out patch-clamp recordings were used to investigate ion permeation and selectivity in two mutant homomeric rat olfactory CNGA2 channels expressed in HEK293 cells. A single point mutation of the negatively charged pore loop (P-loop) glutamate (E342) to either a positively charged lysine or arginine resulted in functional channels, which consistently responded to cGMP, although the currents were generally extremely small. The concentration-response curve of the lysine mutant channel was very similar to that of wild-type (WT) channels, suggesting no major structural alteration to the mutant channels. Reversal potential measurements, during cytoplasmic NaCl dilutions, showed that the lysine and the arginine mutations switched the selectivity of the channel from cations (P(Cl)/P(Na) = 0.07 [WT]) to anions (P(Cl)/P(Na) = 14 [Lys] or 10 [Arg]). Relative anion permeability sequences for the two mutant channels, measured with bi-ionic substitutions, were NO(3)(-) > I(-) > Br(-) > Cl(-) > F(-) > acetate(-), the same as those obtained for anion-selective GABA and glycine channels. The mutant channels also seem to have an extremely small single-channel conductance, measured using noise analysis of about 1-2 pS, compared to a WT value of about 29 pS. The results showed that it is predominantly the charge of the E342 residue in the P-loop, rather than the pore helix dipoles, which controls the cation-anion selectivity of this channel. However, the outward rectification displayed by both mutant channels in symmetrical NaCl solutions suggests that the negative ends of the pore helix dipoles may play a role in reducing the outward movement of Cl(-) ions through these anion-selective channels. These results have potential implications for the determinants of anion-cation selectivity in the large family of P-loop-containing channels.  相似文献   

4.
Longibrachins LGA I (Ac Aib Ala Aib Ala Aib(5) Ala Gln Aib Val Aib(10) Gly Leu Aib Pro Val(15) Aib Aib Gln Gln Pheol(20), with Aib: alpha-aminoisobutyric acid, pheol: phenylalaninol) and LGB II are two homologous 20-residue long-sequence peptaibols isolated from the fungus Trichoderma longibrachiatum that differ between them by a Gln-18/Glu substitution. They distinguish from alamethicin by a Pro-2 for Ala replacement, which allowed to examine for the first time with natural Aib-containing analogues, the effect of Pro-2 on the ion-channel properties exhibited by alamethicin. The influence of these structural modifications on the voltage-gated ion-channel forming activity of the peptides in planar lipid bilayers were analysed. The general 'barrel-stave' model of ion-channel activity, already described for alamethicin, was preserved with both longibrachins. The negatively charged LGB II promoted higher oligomerisation levels, which could presumably dilute the repulsive effect of the negative Glu ring near the entrance of the channel and resulted in lower lifetimes of the substates, confirming the strong anchor of the peptide C-terminus at the cis-interface. Reduction of the channel lifetimes was observed for the longibrachins, compared to alamethicin. This argues for a better stabilisation of the channels formed by peptaibols having a proline at position 2, which results in better anchoring of the peptide monomer N-terminus at the trans-bilayer interface. Qualitative assays of the temperature dependence on the neutral longibrachin channel properties demonstrated a high increase of channel lifetimes and a markedly reduced voltage-sensitivity when the temperature was decreased, showing that such conditions may allow to study the channel-forming properties of peptides leading to fast current fluctuations.  相似文献   

5.
Alamethicin K18 is a covalently linked alamethicin dimer in which the glutamine residue at position 18 in each helix has been replaced by a lysine residue. As described in previous work, channels formed by this peptide show pH-dependent selectivity. The maximum anion selectivity of the putative octameric conducting state is obtained at pH 7 or lower. Inasmuch as no change in selectivity is seen between pH 7 and pH 3, and because protons are expected to be in equilibrium with the open state of the channel during a selectivity measurement, the channel is believed to be fully charged (i.e., all eight lysines protonated) at pH 7. In an effort to understand how such a highly charged channel structure is stable in membranes and why it is not more selective for anions, we have performed a number of computer simulations of the system. Molecular dynamics simulations of 10 ns each of the octameric bundle in a lipid bilayer environment are presented, with either zero, four, or eight lysines charged in the absence of salt, and with eight lysines charged in the presence of 0.5 M and 1 M KCl. When no salt is present and all lysines are charged, on average 1.9 Cl(-) ions are inside the channel and the channel significantly deforms. With 0.5 M KCl present, 2.9 Cl(-) ions are inside the channel. With 1 M KCl present, four Cl(-) ions are present and the channel maintains a regular structure. Poisson-Boltzmann calculations on models of the octameric channel also predict an average of 2-4 Cl(-) ions near the lysine residues as a function of ionic strength. These counterions lower the apparent charge of the channel, which may underlie the decrease in selectivity observed experimentally with increasing salt concentrations. We suggest that to increase the selectivity of Alm K18 channels, positive charges could be engineered in a narrower part of the channel.  相似文献   

6.
The protein antibiotic colicin N forms ion-permeable channels through planar lipid bilayers. Channels are induced when positive voltages higher than +60 mV are applied. Incorporated channels activate and inactivate in a voltage-dependent fashion. It is shown that colicin N undergoes a transition between an “acidic” and a “basic” channel form which are distinguishable by different voltage dependences. The single-channel conductance is non-ohmic and strongly dependent on pH, indicating that titratable groups control the passage of ions through the channel. The ion selectivity of colicin N channels is influenced by the pH and the lipid composition of the bilayer membrane. In neutral membranes the channel undergoes a transition from slightly cation-selective to slightly anion-selective when the pH is changed from 7 to 5. In lipid membranes bearing a negative surface charge the channel shows a more pronounced cation selectivity which decreases but does not reverse upon lowering the pH from 7 to 5. The high degree of similarity between the channel characteristics of colicin A and N suggests that the channels share common features in their molecular structure. Offprint requests to: F. Pattus  相似文献   

7.
Large conductance Ca(2+)-activated K(+) channels (BK(Ca)) contain an intracellular binding site for bovine pancreatic trypsin inhibitor (BPTI), a well-known inhibitor of various serine proteinase (SerP) enzymes. To investigate the structural basis of this interaction, we examined the activity of 11 BPTI mutants using single BK(Ca) channels from rat skeletal muscle incorporated into planar lipid bilayers. All of the mutants induced discrete substate events at the single-channel level. The dwell time of the substate, which is inversely related to the dissociation rate constant of BPTI, exhibited relatively small changes (<9-fold) for the various mutants. However, the apparent association rate constant varied up to 190-fold and exhibited a positive correlation with the net charge of the molecule, suggesting the presence of a negative electrostatic surface potential in the vicinity of the binding site. The substate current level was unaffected by most of the mutations except for substitutions of Lys15. Different residues at this position were found to modulate the apparent conductance of the BPTI-induced substate to 0% (K15G), 10% (K15F), 30% (K15 wild-type), and 55% (K15V) of the open state at +20 mV. Lys15 is located on a loop of BPTI that forms the primary contact region for binding to many SerPs such as trypsin, chymotrypsin, and elastase. The finding that Lys15 is a determinant of the conductance behavior of the BK(Ca) channel when BPTI is bound implies that the same inhibitory loop that contacts SerP's is located close to the protein interface in the BK(Ca) channel complex. This supports the hypothesis that the C-terminal region of the BK(Ca) channel protein contains a domain homologous to SerP's. We propose a domain interaction model for the mechanism of substate production by Kunitz inhibitors based on current ideas for allosteric activation of BK(Ca) channels by voltage and Ca(2+).  相似文献   

8.
Two cyclic peptides, cyclo29,34[Dpr29, Lys34(DTPA-Glu)]-CCK8 (1) and cyclo29,34[Tyr27(SO3H), Dpr29, Lys34(DTPA-Glu)]-CCK8 (2), bearing the chelating moiety DTPA-Glu covalently bound to the Lys side chain have been synthesized by solid-phase methodology. The presence in compound 2 of many acidic functions characteristic of the chelating agent increases the lability of the sulfate group on the Tyr side chain. This finding suggests that prolonged acid treatments should be avoided during the preparation of such peptides. Sulfation of cyclo29,34[Dpr29, Lys34(DTPA-Glu)]-CCK8 was performed using a pyridine-SO3 complex as reagent. This reaction has been found to be the most suitable synthetic strategy for obtaining compound 2 in good yield. Cyclo29,34[Tyr27(SO3H), Dpr29, Lys34(DTPA-Glu)]-CCK8 is a new promising CCK8 analogue, able to coordinate radioactive isotopes of metal ions such as 111In(III), and to bind, in a selective way, the CCKA-R receptor.  相似文献   

9.
Ligand-gated ion channel receptors mediate neuronal inhibition or excitation depending on their ion charge selectivity. An investigation into the determinants of ion charge selectivity of the anion-selective alpha1 homomeric glycine receptor (alpha1 glycine receptor [GlyR]) was undertaken using point mutations to residues lining the extra- and intracellular ends of the ion channel. Five mutant GlyRs were studied. A single substitution at the intracellular mouth of the channel (A-1'E GlyR) was sufficient to convert the channels to select cations over anions with P(Cl)/P(Na) = 0.34. This result delimits the selectivity filter and provides evidence that electrostatic interactions between permeating ions and pore residues are a critical factor in ion charge selectivity. The P-2'Delta mutant GlyR retained its anion selectivity (P(Cl)/P(Na) = 3.81), but it was much reduced compared with the wild-type (WT) GlyR (P(Cl)/P(Na) = 27.9). When the A-1'E and the P-2'Delta mutations were combined (selectivity double mutant [SDM] GlyR), the relative cation permeability was enhanced (P(Cl)/P(Na) = 0.13). The SDM GlyR was also Ca(2+) permeable (P(Ca)/P(Na) = 0.29). Neutralizing the extracellular mouth of the SDM GlyR ion channel (SDM+R19'A GlyR) produced a more Ca(2+)-permeable channel (P(Ca)/P(Na) = 0.73), without drastically altering monovalent charge selectivity (P(Cl)/P(Na) = 0.23). The SDM+R19'E GlyR, which introduces a negatively charged ring at the extracellular mouth of the channel, further enhanced Ca(2+) permeability (P(Ca)/P(Na) = 0.92), with little effect on monovalent selectivity (P(Cl)/P(Na) = 0.19). Estimates of the minimum pore diameter of the A-1'E, SDM, SDM+R19'A, and SDM+R19'E GlyRs revealed that these pores are larger than the alpha1 GlyR, with the SDM-based GlyRs being comparable in diameter to the cation-selective nicotinic acetylcholine receptors. This result provides evidence that the diameter of the ion channel is also an important factor in ion charge selectivity.  相似文献   

10.
Alamethicin is a helical 20-amino acid voltage-gated channel-forming peptide, which is known to exhibit segmental flexibility in solution along its backbone near alpha-methylalanine (MeA)-10 and Gly-11. In an alpha-helical configuration, MeA at position 10 would normally hydrogen-bond with position 14, but the presence of proline at this position prevents the formation of this interhelical hydrogen bond. To determine whether the presence of proline at position 14 contributes to the flexibility of this helix, two analogs of alamethicin were synthesized, one with proline 14 replaced by alanine and another with both proline 14 and glycine 11 replaced by alanine. The C-termini of these peptides were derivatized with a proxyl nitroxide, and paramagnetic enhancements produced by the nitroxide on the Calpha protons were used to estimate r-6 weighted distances between the nitroxide and the backbone protons. When compared to native alamethicin, the analog lacking proline 14 exhibited similar C-terminal to Calpha proton distances, indicating that substitution of proline alone does not alter the flexibility of this helix; however, the subsequent removal of glycine 11 resulted in a significant increase in the averaged distances between the C- and N-termini. Thus, the G-X-X-P motif found in alamethicin appears to be largely responsible for mediating high-amplitude bending motions that have been observed in the central helical domain of alamethicin in methanol. To determine whether these substitutions alter the channel behavior of alamethicin, the macroscopic and single-channel currents produced by these analogs were compared. Although the substitution of the G-X-X-P motif produces channels with altered characteristics, this motif is not essential to achieve voltage-dependent gating or alamethicin-like behavior.  相似文献   

11.
We have used molecular dynamics simulations, corresponding to a total simulation time of 11 ns, to investigate the effective short-time local diffusion coefficient of potassium and chloride ions in a series of model ion channels. These models, which include channels formed by the fungal peptide alamethicin, by a synthetic leucine-serine peptide, and by the pore-lining M2 helix bundle of the nicotinic acetylcholine receptor, have a range of different secondary structures, diameters and hydrophobicities. We find that the diffusion coefficients of both ions are appreciably reduced in the narrower channels, the extent of the reduction being similar for both the anionic and cationic species. This suggests that a difference in mobility cannot be the source of the ion selectivity exhibited by some of the channels (for example, the leucine-serine peptide). We find no evidence for a reduction in mobility of either ion in the nAChR model. These results are broadly in line with a previous similar study of Na+ ions, and may be useful in Poisson-Nernst-Planck, Eyring rate theory or Brownian dynamics calculations of channel conductance.  相似文献   

12.
Rings of inter-helix H-bonds due to Gln at position 7, a highly conserved residue in all pore-forming peptaibols, have been suggested to play an important role in the stabilization of alamethicin channels. In an attempt to test this hypothesis, experimental studies have been undertaken on four synthetic alamethicin non-Aib analogs (Alm-dUL) in which the Gln at position 7 (Q7) is substituted by Ala, Asn, or Ser (Q7A, Q7N, or Q7S). Voltage-dependent pore formation by these analogs in planar lipid bilayers is compared at the macroscopic and single-channel conductance levels. As anticipated, the Q7A substitution abolished all channel-forming activity. The voltage dependence of macroscopic current-voltage curves was conserved with the Q7N substitution but reduced in the Q7S analog. Normalized single-channel conductance ratios between substates follow the same pattern, with the Q7S analog yielding the highest unit conductances. Channel lifetimes were the most significantly modulated parameter with markedly faster kinetics when Gln or Asn was replaced by Ser. The effect of the Q7S substitution on channel lifetimes may be explained through a reduced stabilization of bundles by inter-helix H-bonds.  相似文献   

13.
14.
Inwardly rectifying K+ channels or Kirs are a large gene family and have been predicted to have two transmembrane segments, M1 and M2, intracellular N and C termini, and two extracellular loops, E1 and E2, separated by an intramembranous pore-forming segment, H5. H5 contains a stretch of eight residues that are similar in voltage-dependent K+ channels, Kvs, and this stretch is called the signature sequence of K+ channels. Because mutations in this sequence altered selectivity in Kvs, it has been designated as the selectivity filter. Previously, we used N-glycosylation substitution mutants to map the extracellular topology of a weak inwardly rectifying K+ channel, Kir1.1 or ROMK1, and found that the entire H5 segment was extracellular. We now report utilization of introduced N-glycosylation sites, NX(S/T), at positions Ser(128) in E1, and Gln(140), Ileu(143), and Phe(147) in the H5 sequence of a strong inwardly rectifying K+ channel, Kir2.1. Furthermore, we show that biotinylated channel proteins with N-linked oligosaccharides attached at positions 140 and 143 in the signature sequence are located at the cell surface. Mutant channels were functional as detected by whole-cell and single-channel recordings. Unlike Kir1.1, position Lys(117) was not occupied. We conclude that, for yet another K+ channel, the invariant G(Y/F)G sequence is extracellular rather than intramembranous.  相似文献   

15.
Anion/cation selectivity is a critical property of ion channels and underpins their physiological function. Recently, there have been numerous mutagenesis studies, which have mapped sites within the ion channel-forming segments of ligand-gated ion channels that are determinants of the ion selectivity. Site-directed mutations to specific amino acids within or flanking the M2 transmembrane segments of the anion-selective glycine, GABA(A) and GABA(C) receptors and the cation-selective nicotinic acetylcholine and serotonin (type 3) receptors have revealed discrete, equivalent regions within the ion channel that form the principal selectivity filter, leading to plausible molecular mechanisms and mathematical models to describe how ions preferentially permeate these channels. In particular, the dominant factor determining anion/cation selectivity seems to be the sign and exposure of charged amino acids lining the selectivity filter region of the open channel. In addition, the minimum pore diameter, which can be influenced by the presence of a local proline residue, also makes a contribution to such ion selectivity in LGICs with smaller diameters increasing anion/cation selectivity and larger ones decreasing it.  相似文献   

16.
C S Park  C Miller 《Biochemistry》1992,31(34):7749-7755
Electrostatic interactions between charybdotoxin (CTX), a specific peptide pore blocker of K+ channels, and a Ca(2+)-activated K+ channel were investigated with a genetically manipulable recombinant CTX. Point mutations at certain charged residues showed only small effects on the binding affinity of the toxin molecule: Lys11, Glu12, Arg19, His21, Lys31, and Lys32. Replacement by Gln at Arg25, Lys27, or Lys34 strongly decreased the affinity of the toxin. These affinity changes were mainly due to large increases of toxin dissociation rates without much effect on association rates, as if close-range interactions between the toxin and its receptor site of the channel were disrupted. We also found that the neutralization of Lys27 to Gln removed the toxin's characteristic voltage dependence in dissociation rate. Mutation and functional mapping of charged residues revealed a molecular surface of CTX which makes direct contact with the extracellular mouth of the K+ channel.  相似文献   

17.
A constriction formed by the crossing of the second transmembrane domains of ASIC1, residues G432 to G436, forms the narrowest segment of the pore in the crystal structure of chicken ASIC1, presumably in the desensitized state, suggesting that it constitutes the "desensitization gate" and the "selectivity filter." Residues Gly-432 and Asp-433 occlude the pore, preventing the passage of ions from the extracellular side. Here, we examined the role of Asp-433 and Gly-432 in channel kinetics, ion selectivity, conductance, and Ca(2+) block in lamprey ASIC1 that is a channel with little intrinsic desensitization in the pH range of maximal activity, pH 7.0. The results show that the duration of open times depends on residue 433, with Asp supporting the longest openings followed by Glu, Gln, or Asn, whereas other residues keep the channel closed. This is consistent with residue Asp-433 forming the pore's closing gate and the properties of the side chain either stabilizing (hydrophobic amino acids) or destabilizing (Asp) the gate. The data also show residue 432 influencing the duration of openings, but here only Gly and Ala support long openings, whereas all other residues keep channels closed. The negative charge of Asp-433 was not required for block of the open pore by Ca(2+) or for determining ion selectivity and unitary conductance. We conclude that the conserved residue Asp-433 forms the closing gate of the pore and thereby determines the duration of individual openings while desensitization, defined as the permanent closure of all or a fraction of channels by the continual presence of H(+), modulates the on or off position of the closing gate. The latter effect depends on less conserved regions of the channel, such as TM1 and the extracellular domain. The constriction made by Asp-433 and Gly-432 does not select for ions in the open conformation, implying that the closing gate and selectivity filter are separate structural elements in the ion pathway of ASIC1. The results also predict a significantly different conformation of TM2 in the open state that relieves the constriction made by TM2, allowing the passage of ions unimpeded by the side chain of Asp-433.  相似文献   

18.
It is important for ion channel peptides to have energetic stability and ion-selectivity for development of some medicines. In the present study, our objective was to achieve formation of energetically stable and ion-selective channels in the membrane using cyclic tetrapeptides. We succeeded in formation of energetically stable and ion-selective channels using two cyclic tetrapeptides cyclo(D-Ala-Dap)(2) (Dap; l-2,3-diaminopropionic acid) and cyclo(D-Ala-Glu)(2). The results of ion channel recording suggested that the cationic cyclo(D-Ala-Dap)(2) was resulted in Cl(-) anion-selective and the anionic cyclo(D-Ala-Glu)(2) led to K(+) cation-selective ion channel formation, respectively. This ion selectivity may be attributed to the charge state of peptides. And a low-hydrophobic cyclic tetrapeptide; cyclo(D-Ala-Dap)(2) had a tendency to form stable ion channel compared to more high-hydrophobic ones; cyclo(D-Phe-Lys)(2), cyclo(D-Phe-Dap)(2) and cyclo(D-Ala-Lys)(2). Our findings will shed light on the field of ion channel peptide study, especially cyclic one.  相似文献   

19.
Ion selectivity of gram-negative bacterial porins.   总被引:43,自引:15,他引:28       下载免费PDF全文
Twelve different porins from the gram-negative bacteria Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, and Yersinia pestis were reconstituted into lipid bilayer membranes. Most of the porins, except outer membrane protein P, formed large, water-filled, ion-permeable channels with a single-channel conductance between 1.5 and 6 nS in 1 M KCl. The ions used for probing the pore structure had the same relative mobilities while moving through the porin pore as they did while moving in free solution. Thus the single-channel conductances of the individual porins could be used to estimate the effective channel diameters of these porins, yielding values ranging from 1.0 to 2.0 nm. Zero-current potential measurements in the presence of salt gradients across lipid bilayer membranes containing individual porins gave results that were consistent with the conclusions drawn from the single-channel experiments. For all porins except protein P, the channels exhibited a greater cation selectivity for less mobile anions and a greater anion selectivity for less mobile cations, which again indicated that the ions were moving inside the pores in a fashion similar to their movement in the aqueous phase. Three porins, PhoE and NmpC of E. coli and protein P of P. aeruginosa, formed anion-selective pores. PhoE and NmpC were only weakly anion selective, and their selectivity was dependent on the mobility of the ions. In contrast, cations were unable to enter the selectivity filter of the protein P channel. This resulted in a high anion selectivity for all salts tested in this study. The other porins examined, including all of the known constitutive porins of the four gram-negative bacteria studied, were cation selective with a 3- to 40-fold preference for K+ ions over Cl- ions.  相似文献   

20.
The membrane surface charge modifies the conductance of ion channels by changing the electric potential and redistributing the ionic composition in their vicinity. We have studied the effects of lipid charge on the conductance of a multi-state channel formed in planar lipid bilayers by the peptide antibiotic alamethicin. The channel conductance was measured in two lipids: in a neutral dioleoylphosphatidylethanolamine (DOPE) and a negatively charged dioleoylphosphatidylserine (DOPS). The charge state of DOPS was manipulated by the pH of the membrane-bathing solution. We find that at high salt concentrations (e.g., 2 M NaCl) the effect of the lipid charge is below the accuracy of our measurements. However, when the salt concentration in the membrane-bathing solution is decreased, the surface charge manifests itself as an increase in the conductance of the first two channel levels that correspond to the smallest conductive alamethicin aggregates. Our analysis shows that both the salt and pH dependence of the surface charge effect can be rationalized within the nonlinear Poisson-Boltzmann approach. Given channel conductance in neutral lipids, we use different procedures to account for the surface charge (e.g., introduce averaging over the channel aperture and take into account Na+ adsorption to DOPS heads), but only one adjustable parameter: an effective distance from the nearest lipid charge to the channel mouth center. We show that this distance varies by 0.3-0.4 nm upon channel transition from the minimal conducting aggregate (level L0) to the next larger one (level L1). This conclusion is in accord with a simple geometrical model of alamethicin aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号