首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In postmenopausal women with breast cancer, aromatase, which is the enzyme converting androstenedione to estrone and testosterone to estradiol, is the rate-limiting step in estrogen biosynthesis. The currently available aromatase inhibitor, aminogluethimide, effectively blocks estrogen production and produces tumor regressions in patients previously treated with tamoxifen. This drug, however, produces frequent side effects and blocks steroidogenic steps other than the aromatase enzyme. Thus, newer aromatase inhibitors with greater potency and specificity are under intense study. More than 20 such compounds have recently been developed. In several clinical trials, 4-hydroxyandrostenedione, given parenterally, has been highly active and specific for aromatase inhibition in patients with breast cancer. In two large recent studies, one-third of heavily pretreated women experienced objective tumor regression with this therapy. CGS 16949A, a newer agent, is also Phase II clinical trials. This compound is an imidazole derivative with nearly 1000-fold greater potency than aminoglutethimide. An initial Phase I study compared the potency of 0.6–16 mg daily in 12 postmenopausal women and found maximal suppression of urinary and plasma estrogens with 2 mg daily. The degree of inhibition was similar to that induced by aminoglutethimide or by surgical adrenalectomy. No CNS, hematologic or biochemical toxicity was observed. A larger Phase II study in 54 patients confirmed this high degree of potency of CGS since a plateau effect was observed at the 1.8, 2 and 4 mg daily doses. The endocrine effects were not absolutely specific as a blunting of ACTH-stimulated but not basal aldosterone levels were observed. This and other emerging aromatase inhibitors offer promise as pharmacologic methods to inhibit estrogen production specifically and without side effects.  相似文献   

2.
Despite the dramatic fall in plasma estrogen levels at menopause, only minor differences in breast tissue estrogen levels have been reported comparing pre- and postmenopausal women. Thus, postmenopausal breast tissue has the ability to maintain concentrations of estrone (E1) and estradiol (E2) that are 2–10- and 10–20-fold higher than the corresponding plasma estrogen levels. This finding may be explained by uptake of estrogens from the circulation and/or local estrogen production. Local aromatase activity in breast tissue seems to be of crucial importance for the local estrogen production in some patients while uptake from the circulation may be more important in other patients. Beside aromatase, breast tissue expresses estrogen sulfotransferase and sulfatase as well as dehydrogenase activity, allowing estrogen storage and release in the cells as well as conversions between estrone and estradiol. The activity of the enzyme network in breast cancer tissue is modified by a variety of factors like growth factors and cytokines. Aromatase inhibitors have been used for more than two decades in the treatment of postmenopausal metastatic breast cancer and are currently investigated in the adjuvant treatment and even prevention of breast cancer. Novel aromatase inhibitors and inactivators have been shown to suppress plasma estrogen levels effectively in postmenopausal breast cancer patients. However, knowledge about the influence of these drugs on estrogen levels in breast cancer tissue is limited. Using a novel HPLC-RIA method developed for the determination of breast tissue estrogen concentrations, we measured tissue E1, E2 and estrone sulfate (E1S) levels in postmenopausal breast cancer patients before and during treatment with anastrozole. Our findings revealed high breast tumor tissue estrogen concentrations that were effectively decreased by anastrozole. While E1S was the dominating estrogen fraction in the plasma, estradiol was the estrogen fraction with the highest concentration in tumor tissue. Moreover, plasma estrogen levels did not correlate with tissue estrogen concentrations. The overall experience with aromatase inhibitors and inactivators concerning their influences on breast tissue estrogen concentrations is summarized.  相似文献   

3.
Aromatase inhibition is a well-defined treatment option for postmenopausal breast cancer. Although several aromatase inhibitors such as aminoglutethimide, formestane, fadrozole have been found to inhibit in vivo aromatization by>85%, previous studies reported plasma estrogen levels to be sustained at approximately 20–50% of their control level during treatment with these drugs. The discrepancy could be due to lack of sensitivity or non-specific crossreactions in the radioimmunoassay (RIA) methods. Mean plasma levels of estrone (E1) and estradiol (E2) in postmenopausal women are approximately 80 and 20 pmol/l, respectively; on the contrary, mean plasma levels of the estrogen conjugate estrone sulphate (E1S) are approximately 4–500 pmol/l. Most RIA methods for plasma E2 and E1 measurements have sensitivity limits in the range of 2–3 and 7–10 pmol/l, respectively; accordingly, the suppression of plasma estrogens by more than 80–90% will produce hormone values below the sensitivity limit of the method in many patients. Recently, we developed a new method to determine plasma E1S. This assay has a sensitivity limit of 2.7 pmol/l. In theory, this method may allow the determination of plasma E1S levels suppressed to less than 2% of control values in the majority of patients. Using this method, we found different aromatase inhibitors such as formestane, aminoglutethimide, formestane and aminoglutethimide administered in concert or anastrozole to suppress plasma E1S levels down to 24, 13, 7 and 4%, respectively. The suppression of plasma E1S evaluated with this method thus approaches the percentage aromatase inhibition measured with tracer studies.  相似文献   

4.
The implementation of aromatase inhibitors for treatment of early and metastatic breast cancer has been one of the major improvements in endocrine therapy of breast cancer. Measurement of endocrine effects of aromatase inhibition in vivo has been a major tool in the process of evaluating novel compounds. Biochemical efficacy of aromatase inhibitors in vivo may be determined from their effects on “total body aromatization” as well changes in plasma and tissue estrogen levels. Due to high sensitivity, tracer methods allowing calculation of whole body aromatase inhibition are still considered the gold standard. The method developed by our group in collaboration with the Royal Marsden Hospital and the results of this joint program are summarized and discussed. These studies allowed classification of the different aromatase inhibitors and their optimal dosage, selecting the best compounds for clinical evaluation. In vivo total body aromatase assessment is a work-consuming method, allowing such studies to be conducted in a limited number of patients only. In contrast, plasma estrogen measurement is a cruder but simpler method, allowing screening of larger groups of patients. As plasma estrogens arise through passive diffusion of estrogens synthesized in different body compartments, plasma estrogens, as well as total body aromatase assessment, present a rough estimate of total body tissue estrogen production, and changes associated with treatment with aromatase inhibitors reflect the effects on tissue estrogen production in general. However, plasma estrogen levels do not correlate to breast cancer tissue estrogen levels. This is due to the endocrine autonomy of breast cancer tissue with significant local estrogen production in some tumors. Thus, direct measurement of intratumor estrogens is demanded to evaluate the effects of aromatase inhibitors in malignant target tissues. Our group has developed a highly sensitive HPLC-RIA for the simultaneous measurement of estrone, estradiol, and estrone sulfate in malignant breast tissue samples, and we are currently using this method to assess alterations in intratumor estrogen levels during treatment with different aromatase inhibitors.  相似文献   

5.
Third generation aromatase inhibitors have excellent specificity. Some reports indicate that letrozole may have a minor effect on cortisol synthesis but these were not confirmed: valid comparisons with other aromatase inhibitors requires randomised study.

The putative use of a third generation inhibitor as a single agent in premenopausal women has been investigated using YM511. It was hypothesised that in this situation site-specific suppression of estrogens in breast carcinomas, without systemic effects, may lead to a down-regulation of tumour proliferation. Plasma levels of androstenedione and testosterone were significantly increased by 2 weeks treatment with YM511. Mean plasma estrone levels were suppressed, but some plasma estradiol levels were abnormally high and others abnormally low. These differential effects of YM511 on circulating estrogens supported the concept that peripheral synthesis of estrogens might be suppressed while ovarian production remained high. However, YM511 did not demonstrate anti-proliferative effects in hormone sensitive breast carcinomas.

Consideration of the pharmacology of the estrogen receptor during tamoxifen therapy indicates that tamoxifen effectively saturates the receptor (>99.94% occupancy) in postmenopausal women. The addition of an aromatase inhibitor in this situation would be very unlikely to affect the biological activity of the estrogen receptor. This provides a possible explanation why the clinical efficacy of tamoxifen combined with an aromatase inhibitor appears to be equivalent to that of tamoxifen alone.  相似文献   


6.
The biochemical efficacy of aromatase inhibitors and inactivators in vivo may be determined by two types of methods; by measuring plasma or tissue estrogen levels, or assessment of the conversion of the androgen substrate (in practice, androstenedione) into estrogens (estrone) by the use of tracer methods. While methods to determine plasma and tissue estrogens are limited through lack of sensitivity required to measure the very low concentrations recorded in postmenopausal women on treatment with these compounds, measurement of in vivo aromatization is an extensive procedure, applicable to a limited number of patients only. While we may correlate the mean level of aromatase inhibition achieved with different compounds to clinical efficacy, data correlating individual estrogen suppression to clinical outcome among patients treated with a specific compound is limited. The now well-characterized phenomenon of lack of cross-resistance between non-steroidal aromatase inhibitors and steroidal aromatase inactivators are likely due to biochemical effects not related to differences in total body aromatase inhibition.  相似文献   

7.
Intratumoral levels of estrogens in breast cancer   总被引:4,自引:0,他引:4  
Breast cancer tissue is an endocrine organ and particularly the estrogen biosynthetic properties of this tissue have been well studied. The concentration of estradiol in breast cancer tissue from postmenopausal patients is considerably higher than that in the circulation and appears to depend largely on local production. Androgenic precursor steroids are abundantly present, but estrogen storage pools like fatty acid derivatives appear to be less important than initially thought. New, potent and highly specific aromatase inhibitors effectively inhibit peripheral conversion of androgens to estrogens (Cancer Res. 53: 4563, 1993) as well as intratumour aromatase, median aromatase activity being 89% lower in the tissue from patients pretreated with aromatase inhibitor 7 days prior to surgery (P<0.001). Also the intratissue concentrations of estrogens were decreased (64% and 80% reduction, respectively for estrone and estradiol; P=0.001 and <0.05; Cancer Res. 57: 2109, 1997). These results illustrate that intratissue estrogen biosynthesis is effectively inhibited by the new generation of aromatase inhibitors. The pathophysiological consequences of this finding are currently under study.  相似文献   

8.
Aromatase and its inhibitors--an overview   总被引:2,自引:0,他引:2  
Estrogen synthesis by aromatase occurs in a number of tissues throughout the body. Strategies which reduce production of estrogen offer useful means of treating hormone-dependent breast cancer. Initially, several steroidal compounds were determined to be selective inhibitors of aromatase. The most potent of these, 4-hydroxyandrostenedione (4-OHA) inhibits aromatase competitively but also causes inactivation of the enzyme. A number of other steroidal inhibitors appear to act by this mechanism also. In contrast, the newer imidazole compounds are reversible, competitive inhibitors. In vivo studies demonstrated that 4-OHA inhibited aromatase activity in ovarian and peripheral tissues and reduced plasma estrogen levels in rat and non-human primate species. In rats with mammary tumors, reduction in ovarian estrogen production was correlated with tumor regression. 4-OHA was also found to inhibit gonadotropin levels in animals in a dose-dependent manner. The mechanism of this effect appears to be associated with the weak androgenic activity of the compound. Together with aromatase inhibition, this action may contribute to reducing the growth stimulating effects of estrogen. A series of studies have now been completed in postmenopausal breast cancer patients treated with 4-OHA either 500 mg/2 weeks or weekly, or 250 mg/2 weeks. These doses did not affect gonadotropin levels. Plasma estrogen concentrations were significantly reduced. Complete or partial tumor regression occurred in 26% of the patients and the disease was stabilized in 25% of the patients. The results suggest that 4-OHA is of benefit to postmenopausal patients who have relapsed from prior hormonal therapies. Several of the steroidal inhibitors are now entering clinical trials as well as non-steroidal compounds which are more potent and selective than aminoglutethimide. Aromatase inhibitors should provide several useful additions to the treatment of breast cancer.  相似文献   

9.
The supposed mechanism of action of aminoglutethimide (AG), medical adrenalectomy, has been challenged. AG is now considered to act as an inhibitor of the aromatization of mainly adrenal androgens to estrogens in peripheral tissues and/or breast cancer itself. To further establish the AG dose required to sufficiently reduce estrogen levels in plasma and the possible role of hydrocortisone (HC) in combination with AG or by itself, postmenopausal advanced breast cancer patients received AG low (125 mg bid) or medium (250 mg bid) dose alone or combined with HC (20 mg bid) or HC alone (20 mg bid). Preliminary hormonal data show a similar reduction of serum estrone and estrone sulphate by at least some 50% at 8 wk in all treatment groups. At 6 months these effects persist except for patients treated with HC alone. In the latter a normalization of estrone levels is observed with effective suppression of adrenal androgen precursors, suggesting increased aromatase activity with prolonged glucocorticoid treatment.  相似文献   

10.
The pharmacologic inhibition of aromatase activity has been the focus of clinical trials in patients with advanced stage breast cancer. Recent developments with imidazole compounds that inhibit aromatase activity suggest their clinical use as potent inhibitors of estrogen biosynthesis in postmenopausal breast cancer patients. In this Phase I, open-label, dose-range finding study, we examined the inhibitory potency of CGS 20267 on blood and urine levels of estradiol, estrone and estrone sulfate in 8 patients with metastatic breast cancer. Studies included evaluation of adrenal and thyroid function to look for evidence of general hydroxylase inhibition at dose levels effective for aromatase blockade. Patients were administered CGS 20267 at doses of 0.1 and 0.25 mg, once a day in ascending doses over a 12-week period. Preliminary data reveal that CGS 20267 elicits a striking suppression in plasma estradiol, estrone and estrone sulphate which was observed in some patients as quickly as within 24 h of the first dose. Estrogen suppression of over 90% was achieved within 2 weeks of therapy. No alterations in either baseline or ACTH (cortrosyn) stimulated cortisol and aldosterone levels were observed through the 12 weeks of therapy. In addition, 24 h urine sodium and potassium values were not appreciably altered during therapy. We conclude that CGS 20267 is a potent, specific inhibitor of estrogen biosynthesis in postmenopausal patients with metastatic breast cancer and effectively reduces blood and urine estrogens to undetectable levels.  相似文献   

11.
Aromatase inhibitors and hormone-dependent cancers   总被引:1,自引:0,他引:1  
Aromatase (estrogen synthetase) occurs in a variety of tissues. Using immunocytochemistry, we have recently located this enzyme in cellular compartments of several types of human tissue. Furthermore, we found the mRNA was located in the same structures where tested. As both gonadal and peripherally formed estrogen contribute to growth of hormone sensitive cancers, we have developed aromatase inhibitors to block synthesis of this hormone. We have determined that 4-hydroxyandrostenedione (4-OHA) selectively inhibits aromatase activity in ovarian and peripheral tissues and reduces plasma estrogen levels in rat and non-human primate species. 4-OHA was also found to inhibit gonadotropin levels and reduce estrogen and progesterone receptor levels in treated animals. The mechanism of these effects appear to be associated with the weak androgenic activity of the compound. These effects together with aromatase inhibition may result in a synergistic response reducing estrogen production and action. In postmenopausal women, estrogens are mainly of peripheral origin. When postmenopausal breast cancer patients were administered either daily oral or parenteral weekly treatment with 4-OHA at doses that did not affect their gonadotropin levels, plasma estrogen concentrations were significantly reduced. Complete or partial response to treatment occurred in 34% of 100 patients with advanced breast cancer, while the disease was stabilized in 12%. These results indicate that 4-OHA is of benefit in postmenopausal patients with advanced disease who have relapsed from prior hormonal therapies, and that steroidal inhibitors may be of value in premenopausal patients.  相似文献   

12.
Estrogens have an important role in the growth of breast and other hormone-sensitive cancers. We have shown that 4-hydroxyandrostenedione (4-OHA) selectively blocks estrogen synthesis by inhibiting aromatase activity in ovarian and peripheral tissues and reduces plasma estrogen levels in rat and non-human primate species. In postmenopausal men and women, estrogens are mainly of peripheral origin. When postmenopausal breast cancer patients were administered either by daily oral or parenteral weekly treatment with 4-OHA, plasma estrogen concentrations were significantly reduced. Complete or partial response to treatment occurred in 34% of 100 patients with advanced breast cancer, while the disease was stabilized in 12%. We recently studied the effects of 4-OHA and other aromatase inhibitors, 10-propargylestr-4-ene-3,17-dione (PED) and imidazo[1,5-]3,4,5,6-tetrahydropyrin-6-yl-(4-benzonitrile) (CGS 16949A) as well as 5-reductase inhibitors, N,N-diethyl-4-methyl-3-oxo-4-aza-5-androstane-17β-carboxyamide (4-MA) and 17β-hydroxy-4-aza-4-methyl-19norandrost-5-en-3-one (L651190) in prostatic tissue from 11 patients with prostatic cancer and six patients with benign prostatic hypertrophy (BPH), and from normal men at autopsy. We attempted to measure aromatase activity in tissue incubation by quantitating 3H2O released during aromatization of androstenedione or testosterone labeled at the C-1 position. The amount of 3H2O released from all samples was at least twice that of the heat inactivated tissue samples. The 3H2O release was significantly inhibited by 4-OHA and 4-MA, but not by the other aromatase inhibitors. However, when HPLC and TLC were used to isolate steroid products, no estrone or estradiol was detected in the incubates. Furthermore, no aromatase mRNA was detected following amplification by PCR. The 4-OHA was found to inhibit 5-reductase in both BPH and cancer tissue, although to a lesser extent than 4-MA. The other aromatase inhibitors were without effect. Although a mechanism involving intraprostatic aromatase is not likely, inhibitors may act to reduce peripherally-formed estrogens. In postmenopausal breast cancer, the results indicate that 4-OHA is of significant benefit.  相似文献   

13.
Aromatase is a key enzyme of estrogen production through conversion from serum androgens in estrogen-dependent postmenopausal breast cancer. Aromatase has been reported to be predominantly located in intratumoral stromal cells and adipocytes but not in parenchymal or carcinoma cells in breast cancer tissue. It is, however, true that there have been controversies regarding intratumoral localization of aromatase in human breast carcinoma, especially whether intratumoral production of estrogens through aromatase occurs in parenchymal or stromal cells. Results of several studies suggested that aromatase present in parenchymal carcinoma cells plays more important roles in the growth and invasion of breast carcinomas than that in stromal cells through providing higher levels of estrogens to carcinoma cells. Aromatase inhibitors are increasingly being used in place of tamoxifen after results of various clinical trials demonstrated that aromatase inhibitors are more effective in increasing survival and recurrence of estrogen-dependent breast cancer patients. Therefore, it is important to clarify the estrogen supplying pathway by aromatase inside of breast carcinoma tissues in order to evaluate the possible efficacy of aromatase inhibitor treatment. In this review, the controversies regarding these intratumoral localization patterns in human breast carcinoma will be briefly summarized.  相似文献   

14.
The so-called “third-generation” aromatase inhibitors/inactivators have become standard first-line endocrine therapy for postmenopausal women in the metastatic setting. In addition, these compounds, administered as monotherapy or in sequence with tamoxifen, are likely to become standard adjuvant therapy in most countries in the near future. In contrast to the SERMs, aromatase inhibitors may be assessed for their biochemical efficacy in vivo either by measuring their ability to suppress plasma and tissue estrogen levels or, alternatively, by measuring their ability to inhibit the conversion of tracer-labelled androstenedione into estrone. While contemporary methods for estrogen measurement (with the exception of estrone sulphate) lack the sensitivity to measure plasma estrogen levels during treatment with the most potent compounds, in vivo aromatase inhibition can be determined with a much better sensitivity. Thus, in a joint program conducted by the Royal Marsden Hospital, London and our team in Bergen, we were able to reveal profound differences between first- and second-generation aromatase inhibitors, causing 50–90% aromatase inhibition, and the three third-generation compounds, causing >98% inhibition of total body aromatization.  相似文献   

15.
Selective inhibition of estrogen production with aromatase inhibitors has been found to be an effective strategy for breast cancer treatment. Most studies have focused on inhibitor screening and in vitro kinetic analysis of aromatase inhibition using placental microsomes. In order to determine the effects of different inhibitors on aromatase in the whole cell, we have utilized the human choriocarcinoma cell line, JEG-3 in culture to compare and study three classes of aromatase inhibitors, 4-hydroxyandrostenedione, fadrozole (CGS 16949A), and aminoglutethimide. Fadrozole is the most potent competitive inhibitor and aminoglutethimide is the least potent among the three. However, stimulation of aromatase activity was found to occur when JEG-3 cells were preincubated with aminoglutethimide. In contrast, 4-OHA and fadrozole caused sustained inhibition of aromatase activity in both JEG-3 cells and placental microsomes, which was not reversed even after the removal of the inhibitors. 4-OHA bound irreversibly to the active site of aromatase and caused inactivation of the enzyme which followed pseudo-first order kinetics. However, 4-OHA appears to be metabolized rapidly in JEG-3 cells. Sustained inhibition of aromatase induced by fadrozole occurs by a different mechanism. Although fadrozole bound tightly to aromatase at a site distinct from the steroid binding site, the inhibition of aromatase activity by fadrozole does not involve a reactive process. None of the inhibitors stimulated aromatase mRNA synthesis in JEG-3 cells during 8 h treatment. The stimulation of aromatase activity by AG appeared to be due to stabilization of aromatase protein. According to these results, 4-OHA and fadrozole would be expected to be more beneficial in the treatment of breast cancer patients than AG. The increase in aromatase activity by AG may counteract its therapeutic effect and might be partially responsible for relapse of breast cancer patients from this treatment.  相似文献   

16.
More than two-thirds of breast cancers occur in post-menopausal women, and depend on the estrogens for their proliferation and survival. For the treatment of estrogen-dependent breast cancers, two major treatment options are now available. One is selective estrogen receptor modulator (SERM) such as Tamoxifen and another is aromatase inhibitor such as Anastrozole, Letrozole and Exemestane, which reduce local in situ formation of estrogens. Although these therapies are clinically active for advanced and early breast cancers, de novo and/or acquired resistance to SERM and/or aromatase inhibitors are also clinical problem. Recent studies suggest that local formation of estrogens in the breast tumors is more important than circulating estrogen in plasma for the growth and survival of estrogen-dependent breast cancer in post-menopausal women. The rationale for the importance of local formation of estrogens is based on the following evidences. Estradiol (E2) levels in breast tumors are equivalent to those of pre-menopausal patients, although plasma E2 levels are 50-fold lower after menopause. E2 concentrations in breast tumors of post-menopausal women are 10–40 times higher than serum level. Biosynthesis of estrogens in breast tumors tissues occurs via two major different routes, one is aromatase pathway and another is steroid-sulfatase (STS) pathway. Whereas many studies has been reported about aromatase inhibitor and its clinical trial results in breast cancer patients, limited information are available regarding to other estrogen regulating enzymes including STS, its role in breast tumors and STS inhibitors. STS is the enzyme that hydrolyses estrone 3-sulfate (E1S) and dehydroepiandrosterone-sulfate (DHEA-S) to their active un-sulfoconjugated forms, thereby stimulating the growth and survival of estrogen-dependent breast tumors. It has been well known that E1S level are much higher than E2 level both in plasma and tumor of post-menopausal patients. Recent reports show that more than 80% of breast tumors are stained with anti-STS antibody and the expression of STS is an independent prognostic factor in breast cancer. Taking these findings into consideration, local formation of estrogens could be partially synthesized from large amount of E1S by STS, which exist in breast cancer. On the other hand, aromatase localizes in stroma and adipocyte surrounding breast cancer. Furthermore, since estrogen formation from E1S and DHEA-S (STS pathway) cannot be blocked by aromatase inhibitors, STS is thought to be a new molecular target for the treatment of estrogen-dependent tumor post-SERM and/or aromatase inhibitors. In this symposium, these recent rationale for the importance of STS in post-menopausal breast cancer patients is reviewed as well as STS inhibitor.  相似文献   

17.
Estrogen suppression is an effective endocrine treatment option in pre- as well as postmenopausal breast cancer patients. The fact that it produces clinical benefits not only in these two groups of patients that differ significantly with respect to plasma estrogen levels but also among patients with very low plasma estrogen levels due to previous hypophysectomy, adrenalectomy or treatment with first/second generation aromatase inhibitors, suggests estrogen deprivation to work independent of pretreatment plasma estrogen levels. Interestingly, in vitro studies have revealed MCF-7 cells to respond to estrogen deprivation by sensitization, causing maximum estradiol stimulation at a concentration 10−5 to 10−4 the concentration needed in wild-type cells. While results from recent phase III studies comparing novel aromatase inhibitors and inactivators to conventional therapy have suggested that a more effective hormone ablation may be translated into an improved clinical efficacy, the biochemical rationale for lack of complete cross-resistance between aromatase inhibitors and inactivators or aromatase inhibitors and megestrol acetate remains to be explained. Interestingly, patients becoming resistant to estrogen deprivation may still respond to estrogens administered in pharmacological doses. Future studies are warranted to explore alterations in gene expression and signaling mechanisms in response to different therapies in tumor tissue in vivo.  相似文献   

18.
In our previous study we found that MCF-7 cells possess aromatase activity and stimulate estrogen receptor-mediated growth. The pathways through which androgens are converted to estrogens by aromatase and estrogens interact with estrogen receptors contribute significantly to growth stimulation. The administration of aromatase inhibitor results in suppression of growth stimulation by androgens. This system enabled us to assess directly the biological activities of aromatase inhibitors. Aromatase activity was inhibited in a dose-dependent manner by the addition of aminoglutethimide and CGS 16949A, competitive inhibitors, and of 14-hydroxy-4-androstene-3,6,17-trione and 4-hydroxy-androstenedione, mechanism-based inhibitors. After preincubation with mechanism-based inhibitors, aromatase activity was significantly suppressed, whereas after preincubation with competitive inhibitors, it was adversely increased. These effects were concentration- and time-dependent. Preincubation with competitive inhibitors resulted in augmentation of subsequent androgen stimulation of thymidine incorporation, while preincubation with mechanism-based inhibitors resulted in diminished stimulation by subsequent androgen administration. These results suggest that in MCF-7 cells competitive inhibitors adversely induce aromatase and accelerate the subsequent androgen stimulation of DNA synthesis. Suicide inhibitors are more effective than competitive inhibitors. This system will be useful for aromatase inhibitor screening.  相似文献   

19.
Inhibition of aromatase: insights from recent studies   总被引:3,自引:0,他引:3  
Santen RJ 《Steroids》2003,68(7-8):559-567
Aromatase is the rate limiting enzyme that catalyzes the conversion of androgens to estrogens. Blockade of this step allows treatment of diseases that are dependent upon estrogen. Over the past two decades, highly potent and specific aromatase inhibitors have been developed which block total body aromatization by over 99%. An important recent question is whether aromatase inhibitors are superior to the antiestrogens for treatment of hormone-dependent breast cancer. The third generation aromatase inhibitors have been compared to tamoxifen for the treatment of breast cancer in the advanced, adjuvant, and neoadjuvant settings. All of these studies suggest the superiority of aromatase inhibitors over tamoxifen. The mechanism responsible for the superiority of the aromatase inhibitors relates to the estrogen agonistic effects of tamoxifen. During exposure to estrogen deprived conditions and to tamoxifen, breast cancer cells adapt and upregulate the MAP kinase and PI-3 kinase pathways. These growth factor signaling pathways potentiate the estrogen agonistic properties of tamoxifen. Data from a large adjuvant therapy trial (ATAC trial) provide evidence that the aromatase inhibitors may also be superior for breast cancer prevention. The mechanism for superiority in this setting probably relates to the genotoxic effects of estradiol metabolites. The aromatase inhibitors may be also useful for the treatment of endometriosis and for ovulation induction as evidenced by preliminary data. The recent advances in development of the aromatase inhibitors clearly demonstrate the utility of these agents for treatment of breast cancer and potentially for other indications.  相似文献   

20.
Inhibition of aromatase is currently well-established as the major treatment option of hormone-dependent breast cancer in postmenopausal women. However, despite the effects of aromatase inhibitors in both early and metastatic breast cancer, endocrine resistance may cause relapses of the disease and progression of metastasis. Thus, driven by the success of manipulating the steroidogenic enzyme aromatase, several alternative enzymes involved in steroid synthesis and metabolism have recently been investigated as possible drug targets. One of the most promising targets is the steroid sulfatase (STS) which converts steroid sulfates like estrone sulfate (E1S) and dehydroepiandrosterone sulfate (DHEAS) to estrone (E1) and dehydroepiandrosterone (DHEA), respectively. Estrone and DHEA may thereafter be used for the synthesis of more potent estrogens and androgens that may eventually fuel hormone-sensitive breast cancer cells. The present review summarizes the biology behind steroid sulfatase and its inhibition, the currently available information derived from basic and early clinical trials in breast cancer patients, as well as ongoing research. Article from the Special Issue on Targeted Inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号