首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inconsistent role of nitric oxide on lipolysis in isolated rat adipocytes   总被引:2,自引:0,他引:2  
Though two isoforms of nitric oxide synthase, iNOS and eNOS, were reported in adipocytes, the role of NO in adipose tissue is still ambiguous. The aims of the present study were 1) to follow the effect of bacterial lipopolysaccharide (LPS), on 24 h-lipolysis in rat epididymal adipocyte culture in relation to iNOS stimulation; 2) to compare LPS-induced NO effects with exogenously NO, delivered as S-nitroso-N-acetylpenicillamine (SNAP), and 3) to examine the possible role of NO signaling agonist in lipolysis mediated by the beta(3)-adrenoreceptor agonist. Lipolysis was measured by glycerol and free fatty acid (FFA) production. The medium nitrite levels were used for the indirect estimation of NOS expression. Adipocyte mitochondrial function was assessed by the MTT test. LPS produced a concentration-dependent increase of NO with a decrease of viability at the highest dose. However, LPS did not affect lipolysis. SNAP did not exhibit significant changes in glycerol, FFA or MTT. BRL-37344 and db-cAMP significantly increased nitrite, glycerol and FFA levels. There was a positive correlation between glycerol release and nitrite production. Moreover, BRL-37344 significantly reduced mitochondrial functions. The pretreatment with bupranolol, beta(3)-antagonist, restored all parameters affected by BRL-37344. These results support a concept that NO fulfils multifaceted role of stimulating lipolysis under physiological conditions (beta-agonistic effect) and modulating the same processes during inflammatory (LPS) processes.  相似文献   

2.
3.
4.
Nitric oxide synthase (NOS) isoenzymes generate nitric oxide (NO), a sensitive multifunctional intercellular signal molecule. High NO levels are produced by an inducible NOS (iNOS) in activated macrophages in response to proinflammatory agents, many of which also regulate local bone metabolism. NO is a potent inhibitor of osteoclast bone resorption, whereas inhibitors of NOS promote bone resorption both in vitro and in vivo. The possibility that osteoclasts, like macrophages, express a regulated iNOS and produce NO as a potential autocrine signal following inflammatory stimulation was investigated in well-characterized avian marrow-derived osteoclast-like cells. NO production (reflected by medium nitrite levels) was markedly elevated in these cells by the proinflammatory agents lipopolysaccharide (LPS) and the synergistic action of IL-1α, TNFα, and IFNγ. Inhibitors of NOS activity (aminoguanidine, L-NAME) or iNOS induction (dexamethasone, TGFβ) reduced LPS-stimulated nitrite production. LPS also increased the NOS-associated diaphorase activity of these cells and their reactivity with anti-iNOS antibodies. RT-PCR cloning, using avian osteoclast-like cell RNA and human iNOS primers, yielded a novel 900 bp cDNA with high sequence homology (76%) to human, rat, and mouse iNOS genes. In probing osteoclast-like cell RNA with the PCR-derived iNOS cDNA, a 4.8 kb mRNA species was detected whose levels were greatly increased by LPS. Induction of iNOS mRNA by LPS, or by proinflammatory cytokines, occurred prior to the rise of medium nitrite in time course studies and was diminished by dexamethasone. Moreover, osteoclast-like cells demonstrated an upregulation of NO production and iNOS mRNA by IL-8 and IL-10, regulatory mechanism's not previously described. It is concluded that osteoclast-like cells express a novel iNOS that is upregulated by inflammatory mediators, leading to NO production. Therefore, NO may serve as both a paracrine and autocrine signal for modulating osteoclast bone resorption. © 1996 Wiley-Liss, Inc.  相似文献   

5.
To evaluate the effect of exogenous nitric oxide (NO) and endogenous NO on the production of prostacyclin (PGI(2)) by cultured human pulmonary artery smooth muscle cells (HPASMC) treated with lipopolysaccharide (LPS), interleukin-1(beta)(IL-1(beta)), tumor necrosis factor alpha (TNF(alpha)) or interferon gamma (IFN(gamma)), HPASMC were treated with LPS and cytokines together with or without sodium nitroprusside (SNP), NO donor, N(G)-monomethyl-L-arginine (L-NMMA), NO synthetase inhibitor, and methylene blue (MeB), an inhibitor of the soluble guanylate cyclase. After incubation for 24 h, the postculture media were collected for the assay of nitrite by chemiluminescence method and the assay of PGI(2)by radioimmunoassay. The incubation of HPASMC with various concentrations of LPS, IL-1(beta)or TNF(alpha)for 24 h caused a significant increase in nitrite release and PGI(2)production. However, IFN(gamma)slightly increased the release of nitrite and had little effect on PGI(2)production. Although the incubation of these cells for 24 h with SNP did not cause a significant increase in PGI(2)production, the incubation of HPASMC with SNP and 10 microg/ml LPS, or with SNP and 100 U/ml IL-1(beta)further increase PGI(2)production and this enhancement was closely related to the concentration of SNP. However, stimulatory effect of SNP on PGI(2)production was not found in TNF(alpha)- and IFN(gamma)- treated HPASMC. Addition of L-NMMA to a medium containing LPS or IL-1(beta)reduced nitrite release and attenuated the stimulatory effect of those agents on PGI(2)production. MeB significantly suppressed the production of PGI(2)by HPASMC treated with or without LPS or IL-1(beta). The addition of SNP partly reversed the inhibitory effect of MeB on PGI(2)production by HPASMC. These experimental results suggest that NO might stimulate PGI(2)production by HPASMC. Exogenous NO together with endogenous NO induced by LPS or cytokines from smooth muscle cells might synergetically enhance PGI(2)production by these cells, possibly in clinical disorders such as sepsis and acute respiratory distress syndrome.  相似文献   

6.
Proinflammatory cytokines produced by immune cells destroy pancreatic beta cells in type 1 diabetes. The aim of this study was to investigate the cytokine network and its effects in insulin-secreting cells. INS1E cells were exposed to different combinations of proinflammatory cytokines. Cytokine toxicity was estimated by MTT assay and caspase activation measurements. The NFκB-iNOS pathway was analyzed by a SEAP reporter gene assay, Western-blotting and nitrite measurements. Gene expression analyses of ER stress markers, Chop and Bip, were performed by real-time RT-PCR. Cytokines tested in this study, namely IL-1β, TNFα and IFNγ, had deleterious effects on beta cell viability. The most potent toxicity exhibited IL-1β and its combinations with other cytokines. The toxic effects of IL-1β towards cell viability, caspase activation and iNOS activity were dependent on nitric oxide and abolished by an iNOS blocker. IL-1β was the strongest inducer of the NFκB activation. An iNOS blocker inhibited IL-1β-mediated NFκB activation in the first, initial phase of cytokine action, but did not affect significantly NFκB activation after prolonged incubation. Interestingly iNOS protein expression was induced predominantly by IL-1β and decreased in the presence of an iNOS blocker in the case of a short time exposure. The changes in the expression of ER stress markers were also almost exclusively dependent on the IL-1β presence and counteracted by iNOS blockade. Thus cytokine-induced beta cell death is primarily IL-1β mediated with a NO-independent enhancement by TNFα and IFNγ. The deleterious effects on cell viability and function are crucially dependent on IL-1β-induced nitric oxide formation.  相似文献   

7.
This in vivo study evaluates the effect of N-acetylcysteine (NAC) administration on nitric oxide (NO) production by the inducible form of nitric oxide synthase (iNOS). NO production was induced in the rat by the ip administration of 2 mg/100 g lipopolysaccharide (LPS). This treatment caused: (1) a decrease in body temperature within 90 min, followed by a slow return to normal levels; (2) an increase in plasma levels of urea, nitrite/nitrate, and citrulline; (3) the appearance in blood of nitrosyl-hemoglobin (NO-Hb) and in liver of dinitrosyl-iron-dithiolate complexes (DNIC); and (4) increased expression of iNOS mRNA in peripheral blood mononuclear cells (PBMC). Rat treatment with 15 mg/100 g NAC ip, 30 min before LPS, resulted in a significant decrease in blood NO-Hb levels, plasma nitrite/nitrate and citrulline concentrations, and liver DNIC complexes. PBMC also showed a decreased expression of iNOS mRNA. NAC pretreatment did not modify the increased levels of plasma urea or the hypothermic effect induced by the endotoxin. The administration of NAC following LPS intoxication (15 min prior to sacrifice) did not affect NO-Hb levels. These results demonstrate that NAC administration can modulate the massive NO production induced by LPS. This can be attributed mostly to the inhibitory effect of NAC on one of the events leading to iNOS protein expression. This hypothesis is also supported by the lack of effect of late NAC administration.  相似文献   

8.
K W Kang  Y M Pak  N D Kim 《Nitric oxide》1999,3(3):265-271
Diethylmaleate (DEM) and buthionine sulfoximine (BSO), glutathione (GSH)-depleting agents, reduced the metabolic activity and the protein level of iNOS in both macrophages and hepatocytes activated by lipopolysaccharide (LPS). In this study, we examined the effects of DEM and BSO on iNOS expression in LPS-treated mice under the assumption that the level of GSH may alter the expression of nitric oxide synthase. Serum levels of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) were also determined. DEM markedly decreased the levels of hepatic GSH in response to LPS. Treatment of mice with DEM significantly reduced serum nitrite/nitrate levels and hepatic iNOS protein and mRNA induction by LPS. Although BSO inhibited the level of hepatic GSH in LPS-treated mice, the agent did not alter serum nitrite/nitrate levels and hepatic iNOS expression. DEM completely inhibited an increase of serum IL-1beta level by LPS, whereas BSO failed to inhibit it. Neither DEM nor BSO significantly affected the induction of serum TNF-alpha level by LPS. These results showed that DEM and BSO differentially affect the expression of iNOS in endotoxemic mice, suggesting the possibility that suppression of iNOS expression by DEM may be associated with the inhibition of IL-1beta but not of TNF-alpha.  相似文献   

9.
Glial cell activation associated with inflammatory reaction may contribute to pathogenic processes of neurodegenerative disorders, through production of several cytotoxic molecules. We investigated the consequences of glial activation by interferon-gamma (IFN-gamma)/lipopolysaccharide (LPS) in rat midbrain slice cultures. Application of IFN-gamma followed by LPS caused dopaminergic cell death and accompanying increases in nitrite production and lactate dehydrogenase release. Aminoguanidine, an inhibitor of inducible nitric oxide synthase (iNOS), or SB203580, an inhibitor of p38 mitogen-activated protein kinase, prevented dopaminergic cell loss as well as nitrite production. SB203580 also suppressed expression of iNOS and cyclooxygenase-2 (COX-2) induced by IFN-gamma/LPS. A COX inhibitor indomethacin protected dopaminergic neurons from IFN-gamma/LPS-induced injury, whereas selective COX-2 inhibitors such as NS-398 and nimesulide did not. Notably, indomethacin was able to attenuate neurotoxicity of a nitric oxide (NO) donor. Neutralizing antibodies against tumour necrosis factor-alpha and interleukin-1beta did not inhibit dopaminergic cell death caused by IFN-gamma/LPS, although combined application of these antibodies blocked lactate dehydrogenase release and decrease in the number of non-dopaminergic neurons. These results indicate that iNOS-derived NO plays a crucial role in IFN-gamma/LPS-induced dopaminergic cell death, and that indomethacin exerts protective effect by mechanisms probably related to NO neurotoxicity rather than through COX inhibition.  相似文献   

10.
In type 1 diabetes, inflammatory and immunocompetent cells enter the islet and produce proinflammatory cytokines such as interleukin-1β (IL-1β), IL-12, tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ); each contribute to β-cell destruction, mediated in part by nitric oxide. Inhibitors of histone deacetylases (HDAC) are used commonly in humans but also possess antiinflammatory and cytokine-suppressing properties. Here we show that oral administration of the HDAC inhibitor ITF2357 to mice normalized streptozotocin (STZ)-induced hyperglycemia at the clinically relevant doses of 1.25-2.5 mg/kg. Serum nitrite levels returned to nondiabetic values, islet function improved and glucose clearance increased from 14% (STZ) to 50% (STZ + ITF2357). In vitro, at 25 and 250 nmol/L, ITF2357 increased islet cell viability, enhanced insulin secretion, inhibited MIP-1α and MIP-2 release, reduced nitric oxide production and decreased apoptosis rates from 14.3% (vehicle) to 2.6% (ITF2357). Inducible nitric oxide synthase (iNOS) levels decreased in association with reduced islet-derived nitrite levels. In peritoneal macrophages and splenocytes, ITF2357 inhibited the production of nitrite, as well as that of TNFα and IFNγ at an IC(50) of 25-50 nmol/L. In the insulin-producing INS cells challenged with the combination of IL-1β plus IFNγ, apoptosis was reduced by 50% (P < 0.01). Thus at clinically relevant doses, the orally active HDAC inhibitor ITF2357 favors β-cell survival during inflammatory conditions.  相似文献   

11.
We investigated the effects of iron on the production of nitric oxide (NO), inducible NO synthase (iNOS), and plasma cytokines induced by lipopolysaccharide (LPS) in vivo. Male Wistar rats were preloaded with a single intravenous injection of saccharated colloidal iron (Fesin, 70 mg iron/kg body weight) or normal saline as a control, and then given an intraperitoneal injection of LPS (5.0 mg/kg body weight). Rats, preloaded with iron, had evidence of both iron deposition and strong iNOS induction in liver Kupffer cells upon injection of LPS; phagocytic cells in the spleen and lung had similar findings. LPS-induced NO production in iron-preloaded rats was significantly higher than control rats as accessed by NO-hemoglobin levels measured by ESR (electron spin resonance) and NOx (nitrate plus nitrite) levels. Western blot analysis showed that iron preloading significantly enhanced LPS-induced iNOS induction in the liver, but not in the spleen or lung. LPS-induced plasma levels of IL-6, IL-1beta, and TNF-alpha were also significantly higher in iron-preloaded rats as shown by ELISA, but IFN-gamma levels were unchanged. We conclude that colloidal-iron phagocytosed by liver Kupffer cells enhanced LPS-induced NO production in vivo, iNOS induction in the liver, and release of IL-6, IL-1beta, and TNF-alpha.  相似文献   

12.
13.
14.
Alpha‐lipoic acid (α‐lipoic acid) is a potent antioxidant compound that has been shown to possess anti‐inflammatory effects. RAW 264.7 macrophages produce various inflammatory mediators such as nitric oxide, IL‐1β, IL‐6 and TNF‐alpha upon activation with LPS ( Lipopolysaccharide) and IFNγ (interferon gamma). In this study, the effect of 12 synthetic indole α‐lipoic acid derivatives on nitric oxide production and iNOS (inducible nitric oxide synthase) protein expression in LPS/IFNγ activated RAW 264.7 macrophages was determined. Cell proliferation, nitric oxide levels and iNOS protein expression were examined with thiazolyl blue tetrazolium blue test, griess assay and western blot, respectively. Our results showed that all of the indole α‐lipoic acid derivatives showed significant inhibitory effects on nitric oxide production and iNOS protein levels (p < 0.05). The most active compounds were identified as compound I‐4b, I‐4e and II‐3b. In conclusion, these indole α‐lipoic acid derivatives may have the potential for treatment of inflammatory conditions related with high nitric oxide production. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Antimicrobial peptide P18 markedly inhibited the expression of inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1beta) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells, whereas magainin 2 did not inhibit these activities. P18 dose-dependently reduced nitric oxide (NO) production by LPS-stimulated RAW 264.7 macrophage cells, with complete inhibition at 20 microg P18 ml(-1). In contrast, P18 had no effect on NO production and the expression of iNOS mRNA and iNOS protein by interferon-gamma (IFN-gamma)-stimulated RAW264.7 cells, suggesting P18 selectively inhibits LPS-stimulated inflammatory responses in macrophages. An LAL assay showed that P18 has strong LPS-neutralizing activity, indicating that P18 inhibits the inflammatory responses in LPS-stimulated macrophages by direct binding to LPS. Collectively, our results indicate that P18 has promising therapeutic potential as a novel anti-inflammatory as well as antimicrobial agent.  相似文献   

17.
18.
Environmental factors, such as viral infection, have been implicated as potential triggering events leading to the initial destruction of pancreatic beta cells during the development of autoimmune diabetes. Double-stranded RNA (dsRNA), the active component of a viral infection that stimulates antiviral responses in infected cells, has been shown in combination with interferon-gamma (IFN-gamma) to stimulate inducible nitric oxide synthase (iNOS) expression and nitric oxide production and to inhibit beta cell function. Interferon regulatory factor-1 (IRF-1), the activation of which is induced by dsRNA, viral infection, and IFN-gamma, regulates the expression of many antiviral proteins, including PKR, type I IFN, and iNOS. In this study, we show that IRF-1 is not required for dsRNA + IFN-gamma-stimulated iNOS expression and nitric oxide production by mouse islets. In contrast to islets, dsRNA + IFN-gamma fails to induce iNOS expression or nitric oxide production by macrophages isolated from IRF-1(-/-) mice; however, dsRNA + IFN-gamma induces similar levels of IL-1 release by macrophages isolated from both IRF-1(-/-) and IRF-1(+/+) mice. Importantly, we show that dsRNA- or dsRNA + IFN-gamma-stimulated IRF-1 expression by mouse islets and peritoneal macrophages is independent of PKR. These results indicate that IRF-1 is required for dsRNA + IFN-gamma-induced iNOS expression and nitric oxide production by mouse peritoneal macrophages but not by mouse islets. These findings suggest that dsRNA + IFN-gamma stimulates iNOS expression by two distinct PKR-independent mechanisms; one that is IRF-1-dependent in macrophages and another that is IRF-1-independent in islets.  相似文献   

19.
Cherng SC  Cheng SN  Tarn A  Chou TC 《Life sciences》2007,81(19-20):1431-1435
C-phycocyanin (C-PC), found in blue green algae, is often used as a dietary nutritional supplement. C-PC has been found to have an anti-inflammatory activity and exert beneficial effect in various diseases. However, little is known about its mechanism of action. Overproduction of nitric oxide (NO) derived from inducible nitric oxide synthase (iNOS) plays an important role in the pathogenesis of inflammation. The aim of this study was to determine whether C-PC inhibits production of nitrite, an index of NO, and iNOS expression in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. Our results indicated that C-PC significantly inhibited the LPS-induced nitrite production and iNOS protein expression accompanied by an attenuation of tumor necrosis factor-alpha (TNF-alpha) formation but had no effect on interleukin-10 production in macrophages. Furthermore, C-PC also suppressed the activation of nuclear factor-kappaB (NF-kappaB) through preventing degradation of cytosolic IkappaB-alpha in LPS-stimulated RAW 264.7 macrophages. Thus, the inhibitory activity of C-PC on LPS-induced NO release and iNOS expression is probably associated with suppressing TNF-alpha formation and nuclear NF-kappaB activation, which may provide an additional explanation for its anti-inflammatory activity and therapeutic effect.  相似文献   

20.
通过RNA印迹分析和亚硝酸盐含量测定检查TNF-α、IL-1β和LPS对大鼠血管平滑肌细胞(VSMC)诱导型一氧化氮合酶(iNOS)基因表达及NO生成的影响.结果表明,TNF-α、IL-1β和LPS均能显著诱导VSMCiNOS基因表达和促进NO生成,其作用强度与浓度和作用时间有关;双因素(TNF-α+LPS,LPS+IL-1β)对诱导iNOS基因表达及NO生成产生协同作用.PolymyxinB和地塞米松可部分抑制TNF-α对iNOS基因表达的诱导作用及NO生成  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号