首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large-scale, high-density freezing of hybridomas was studied to apply frozen cells to start high-density culture. We showed here that hybridomas can be frozen at 1.5 x 10(8) cells/mL, without decrement in viability and proliferating activity. Blood transporting bags were used for large-scale freezing to store 25 mL of cell suspension with a cell density, 1.5 x 10(8)/mL. The number of cells stored in a bag (3.0 x 10(9) cells) was enough to start a high-density culture at a 10 times higher cell density (6.0 x 10(6) cells/mL) than normal inoculation, and the cells proliferated to 10(7) cells/mL within 2 days. These results indicate that the large-scale freezing method is useful for large-scale culture of mammalian cells.  相似文献   

2.
Conventional methods of endothelial cell culture on monolayers and beads require enzymatic digestion, traumatic scraping, or centrifugation to transfer cells to other experimental systems. Gelfoam, a porous gelatin block, not only supports the growth of bovine pulmonary artery endothelial cells but also allows the rapid transfer of cell-laden blocks from one experimental system to another with minimal intervention. This property has been shown to be especially useful for the rapid fixation of endothelial cells for microscopy using standard histologic methods. Histology confirmed that the trabecular nature of the substrate allows endothelial cells to line the interstices of the sponge matrix and grow in a configuration that simulates the appearance of the endothelium in small vessels and capillaries. The inoculation of 1 x 10(5) endothelial cells on 7.5 mg Gelfoam (24 x 8 x 2 mm blocks) was enhanced by fibroblast growth factor and resulted in cell attachment by day 2 with a cell doubling time of 1.7 days. In addition, endothelial cells completely infiltrated 1, 5 and 7.5 mg Gelfoam blocks, as verified by histology. Assays to quantify cell number and protein were easily performed. To facilitate cell counting, the Gelfoam matrix was rapidly removed by the addition of 0.05 mg/ml collagenase, a concentration that interfered minimally with the assay for cellular protein concentration. The data demonstrate that Gelfoam is a suitable support growth matrix for the in vitro culture of bovine pulmonary artery endothelial cells.  相似文献   

3.
Development of the optimal inoculation conditions for microcarrier cultures   总被引:3,自引:0,他引:3  
The environmental conditions under which anchorage-dependent mammalian cells are grown are not necessarily those under which a culture should be initiated. Cell attachment is a physical process, and those factors which affect forces involved in cell attachment differ from the biological factors which affect cell growth. We have conducted an extensive experimental study to define clearly the optimal environmental conditions for MRC-5 cell attachment onto microcarriers. These inoculation conditions are particularly important when the serial propagation of mammalian cells on microcarriers is considered as in a human vaccine production process. The conditions which were investigated are: initial serum content (% v/v), initial pH, inoculation level (cells/bead), agitation rate (rpm), and the concentration of microcarriers (g/L). The initial distribution of attached cells was found to have a significant affect on the overall efficiency of anchorage-dependent cell cultures, and was used to evaluate attachment efficiency. Based on the experimental results, we propose an optimized protocol for the inoculation of microcarrier cultures.  相似文献   

4.
杆状病毒用于哺乳动物细胞快速高效表达外源基因的研究   总被引:2,自引:2,他引:2  
现已发现杆状病毒可进入某些培养的哺乳动物细胞,这提示可将杆状病毒作为一种对哺乳动物细胞的新型基因转移载体。对杆状病毒转移载体的改造及对哺乳动物细胞的基因转移方式进行了进一步的研究。以绿色荧光蛋白基因为报告基因,利用Bac-to-Bac系统构建了分别含有正向和反向CMV启动子表达盒的两种重组杆状病毒。可观察到CMV启动子在Sf9细胞中可启动报告基因的表达,但表达效率较低。用重组杆状病毒感染后Sf9细胞的培养上清直接与HepG2细胞作用,以流式细胞术检测基因转移效率及荧光表达强度,发现这两种病毒在相同的感染复数下对HepG2细胞具有相似的基因转移及表达效率。同时,利用流式细胞术进一步研究了直接使用重组杆状病毒感染4d后Sf9细胞的培养上清对哺乳动物细胞进行基因转移的方法。通过对HepG2细胞的实验结果显示,将带毒Sf9细胞培养上清(1.2×107PFU/mL)用哺乳动物细胞培养基1倍稀释后,37℃下孵育靶细胞12h(moi=50),可达到较高的基因转移及表达效率,同时不会对细胞造成明显损伤。将重组杆状病毒与脂质体和逆转录病毒这两种系统对HepG2及CV1细胞的基因转移效率进行了比较,结果发现在同样未经浓缩等特殊处理的条件下重组杆状病毒对这两种细胞的基因转移效率是最高的。因此可以认为,经过适当改造后的Bac-to-Bac重组杆状病毒系统可作为一种对哺乳动物细胞简便高效的基因转移表达载体。  相似文献   

5.
《MABS-AUSTIN》2013,5(8):1502-1514
ABSTRACT

Although process intensification by continuous operation has been successfully applied in the chemical industry, the biopharmaceutical industry primarily uses fed-batch, rather than continuous or perfusion methods, to produce stable monoclonal antibodies (mAbs) from Chinese hamster ovary (CHO) cells. Conventional fed-batch bioreactors may start with an inoculation viable cell density (VCD) of ~0.5 × 106 cells/mL. Increasing the inoculation VCD in the fed-batch production bioreactor (referred to as N stage bioreactor) to 2–10 × 106 cells/mL by introducing perfusion operation or process intensification at the seed step (N-1 step) prior to the production bioreactor has recently been used because it increases manufacturing output by shortening cell culture production duration. In this study, we report that increasing the inoculation VCD significantly improved the final titer in fed-batch production within the same 14-day duration for 3 mAbs produced by 3 CHO GS cell lines. We also report that other non-perfusion methods at the N-1 step using either fed batch or batch mode with enriched culture medium can similarly achieve high N-1 final VCD of 22–34 × 106 cells/mL. These non-perfusion N-1 seeds supported inoculation of subsequent production fed-batch production bioreactors at increased inoculation VCD of 3–6 × 106 cells/mL, where these achieved titer and product quality attributes comparable to those inoculated using the perfusion N-1 seeds demonstrated in both 5-L bioreactors, as well as scaled up to 500-L and 1000-L N-stage bioreactors. To operate the N-1 step using batch mode, enrichment of the basal medium was critical at both the N-1 and subsequent intensified fed-batch production steps. The non-perfusion N-1 methodologies reported here are much simpler alternatives in operation for process development, process characterization, and large-scale commercial manufacturing compared to perfusion N-1 seeds that require perfusion equipment, as well as preparation and storage vessels to accommodate large volumes of perfusion media. Although only 3 stable mAbs produced by CHO cell cultures are used in this study, the basic principles of the non-perfusion N-1 seed strategies for shortening seed train and production culture duration or improving titer should be applicable to other protein production by different mammalian cells and other hosts at any scale biologics facilities.  相似文献   

6.
Increasingly high cell density, high product titer cell cultures containing mammalian cells are being used for the production of recombinant proteins. These high productivity cultures are placing a larger burden on traditional downstream clarification and purification operations due to higher product and impurity levels. Controlled flocculation and precipitation of mammalian cell culture suspensions by acidification or using polymeric flocculants have been employed to enhance clarification throughput and downstream filtration operations. While flocculation is quite effective in agglomerating cell debris and process related impurities such as (host cell) proteins and DNA, the resulting suspension is generally not easily separable solely using conventional depth filtration techniques. As a result, centrifugation is often used for clarification of cells and cell debris before filtration, which can limit process configurations and flexibility due to the investment and fixed nature of a centrifuge. To address this challenge, novel depth filter designs were designed which results in improved primary and secondary direct depth filtration of flocculated high cell density mammalian cell cultures systems feeds, thereby providing single‐use clarification solution. A framework is presented here for optimizing the particle size distribution of the mammalian cell culture systems with the pore size distribution of the gradient depth filter using various pre‐treatment conditions resulting in increased depth filter media utilization and improved clarification capacity. Feed conditions were optimized either by acidification or by polymer flocculation which resulted in the increased average feed particle‐size and improvements in throughput with improved depth filters for several mammalian systems. Biotechnol. Bioeng. 2013; 110: 1964–1972. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Disposable cell culture vessels are extensively used at small scales for process optimization and validation, but they lack monitoring capabilities. Optical sensors that can be easily adapted for use in small‐scale vessels are commercially available for pH, dissolved oxygen (DO), and dissolved carbon dioxide (DCO2). However, their use has been limited due to the contamination and compatibility issues. We have developed a novel solution to these problems for DO monitoring. Oxygen diffusion through permeable vessel wall can be exploited for noninvasive monitoring. An optical oxygen sensor can be placed outside the oxygen permeable vessel wall thereby allowing oxygen diffusing through the vessel wall to be detected by the sensor. This way the sensor stays separate from the cell culture and there are no concerns about contaminants or leachants. Here we implement this method for two cell culture devices: polystyrene‐made T‐75 tissue culture flask and fluorinated ethylene propylene (FEP)‐made Vuelife® cell culture bag. Additionally, mammalian and microbial cell cultures were performed in Vuelife® cell culture bags, proving that a sensor placed outside can be used to track changes in cell cultures. This approach toward noninvasive monitoring will help in integrating cell culture vessels with sensors in a seamless manner. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:172–177, 2014  相似文献   

8.
许谦  冯明光 《微生物学报》2001,41(3):372-377
继代培养常被疑为虫霉菌种毒力下降或某些生物学性状发生改变的原因之一。从研究新蚜虫疠霉 (Pandoraneoaphidis)固体平板菌落的液体培养获得的初始菌液出发 ,连续 6次继代液培 ,测定了其在萨氏营养液中继代培养生产的菌丝生物量、产孢量及其对桃蚜 (Myzuspersicae)的毒力。在初始菌液的生物量 8 8mg mL和产孢量 7 2× 1 0 5孢子 mg的条件下 ,以三种转接比 (种液 营养液 ,v v)连续 6次继代培养 ,在 1 2 0转接比下的菌丝生物量和产孢量分别为 6 4~ 1 0 0mg mL和 7 3× 1 0 5~ 1 0 8× 1 0 5孢子 mg,在 2 2 0下为 5 7~ 8 5mg mL和 1 0 0× 1 0 5~ 1 2 1× 1 0 5孢子 mg ,在 4 2 0下为 5 5~ 1 0 9mg mL和 6 4× 1 0 5~ 1 0 9× 1 0 5孢子 mg。方差分析表明 ,继代培养对生物量和产孢量均无显著影响 (P <0 0 5)。用初始菌液和 1 2 0转接比下继代培养的菌液制备而成的接种体对桃蚜进行两组毒力测定 ,每一组测定的接种…  相似文献   

9.
Freshly harvested primary rat hepatocytes cultivated as multicellular aggregates, or spheroids, have been observed to exhibit enhanced liver-specific function and differentiated morphology compared to cells cultured as monolayers. An efficient method of forming spheroids in spinner vessels is described. Within 24 h after inoculation, greater than 80% of inoculated cells formed spheroids. This efficiency was significantly greater than that reported previously for formation in stationary petri dishes. With a high specific oxygen uptake rate of 2.0 x 10(-9) mmol O(2)/cell/h, the oxygen supply is critical and should be monitored for successful formation. Throughout a 6-day culture period, spheroids assembled in spinner cultures maintained a high viability and produced albumin and urea at constant rates. Transmission electron microscopy indicated extensive cell-cell contacts and tight junctions between cells within spheroids. Microvilli-lined bile canaliculus-like channels were observed in the interior of spheroids and appeared to access the exterior through pores at the outer surface. Spheroids from spinner cultures exhibited at least the level of liver-specific activity as well as similar morphology and ultrastructure compared to spheroids formed in stationary petri dishes. Hepatocytes cultured as spheroids are potentially useful three-dimensional cell systems for application in a bioartificial liver device and for studying xenobiotic drug metabolism. (c) 1996 John Wiley & Sons, Inc.  相似文献   

10.
The zebrafish is a popular model for studies of vertebrate development and toxicology. However, in vitro approaches with this organism have not been fully exploited because cell culture systems have been unavailable. We developed methods for the culture of cells from blastula-stage diploid and haploid zebrafish embryos, as well as cells from the caudal and pelvic fin, gill, liver, and viscera of adult fish. The haploid embryo-derived cells differentiated in culture to a pigmented phenotype and expressed, upon exposure to 2,3,7,8-tetrachlorodibenzo p-dioxin, a protein that was immunologically and functionally similar to rainbow trout cytochrome P450IA1 Zebrafish cultures were grown in a complex basal nutrient medium supplemented with insulin, trout embryo extract, and low concentrations of trout and fetal bovine serum; they could not be maintained in conventional culture medium containing a high concentration of mammalian serum. Using calcium phosphate-mediated transfection, a plasmid constructed for use in mammalian cells was introduced into zebrafish embryo cell cultures and expressed in a stable manner. These results indicated that the transfection procedures utilized in mammalian systems can also be applied to zebrafish cell cultures, providing a means for in vitro alteration of the genotype and phenotype of the cells.[/ p]Abbreviations TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin - EROD, 7-ethyoxyresorufin - HDPDS, 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid - EDTA, ethylanediaminetetraacetic acid - FBS, fetal bovine serum - LDF, limit dilution factor - DMSO, dimethyl sulfoxide - ES, embryonal stem - PAH, polycylic aromatic hydrocarbons - ZG, zebrafish gill - ZBF, zebrafish pelvic fin - ZV, Zebrafish viscera - ZCF, zebrafish caudal fin - ZEM, diploid blastula-derived  相似文献   

11.
Methods were developed and evaluated for the preservation of tissue cells grown in suspension culture and the reestablishment of suspension cultures directly from inoculum stored at -175 C. The factors investigated were processing pH, temperature of processing, freezing medium, and method of inoculation of the starter suspension cultures from the frozen stock (-175 C). Three parameters, cell viability, cell size, and growth potential in suspension culture after freezing, were used to evaluate the various factors. The results indicate that cells processed at 4 C, frozen at 1 C per min to -50 C in a medium containing 5% dimethyl sulfoxide plus 10% bovine serum at concentrations of 2 x 10(7) to 4 x 10(7) cells/ml, and stored at -175 C will reestablish suspension cultures directly from frozen seed. A 1-ml amount of frozen stock inoculated into 99 ml of medium routinely produced 2 x 10(6) to 3 x 10(6) viable cells/ml (2 x 10(8) to 3 x 10(8) total cells) in suspension culture in 4 to 5 days. Inoculum preserved by this procedure grew equally well in either serum-free or serum-containing growth medium.  相似文献   

12.
The number and use of automated cell culture systems for mammalian cell culture are steadily increasing. Automated cell culture systems require miniaturized analytics with a high throughput to obtain as much information as possible from single experiments. Standard analytics commonly used for conventional bioreactor samples cannot handle the high throughput and the low sample volumes. Spectroscopic methods provide a means of meeting this analytical requirement and afford fast and direct access to process information. In the first part of this review, UV/VIS, fluorescence, Raman, near‐infrared, and mid‐infrared spectroscopy are presented. In the second part of the review, these spectroscopic methods are evaluated in terms of their applicability in the new field of mammalian cell culture processes in automated cell culture systems. Unlike standard bioreactors, these automated systems have special requirements that apply to the use of spectroscopic methods. Therefore, they are compared with regard to cell culture automation, throughput, and required sample volume.  相似文献   

13.
The scale-up of insect cell cultures and the production of baculovirus with these cultures is dependent on the inoculation density applied. The effect of applying a low inoculation on the specific growth rate and on the duration of the lag phase was tested. Three different cell lines, HzAm1, Ha2302, and Sf21 were tested in a total of five cell line/medium combinations. Growth in suspension culture was examined, and data obtained were fitted with the Gompertz equation. A significant decline in specific growth rate with decreasing inoculation density was observed in all cell line/medium combinations, except for HzAm1. No critical inoculation density, below which no growth would occur, was found. In suspension culture in shake flasks, an inoculation density of 5 x 10(4) cells/mL is achievable, without severely influencing the overall growth rate. A lower inoculation density in suspension culture results in less steps in the scale-up process and might be a tool in bypassing the viral passage effect.  相似文献   

14.
Process control in cell culture technology using dielectric spectroscopy   总被引:1,自引:0,他引:1  
In the biopharmaceutical industry, mammalian and insect cells as well as plant cell cultures are gaining worldwide importance to produce biopharmaceuticals and as products themselves, for example in stem cell therapy. These highly sophisticated cell-based production processes need to be monitored and controlled to guarantee product quality and to satisfy GMP requirements. With the process analytical technology (PAT) initiative, requirements regarding process monitoring and control have changed and real-time in-line monitoring tools are now recommended. Dielectric spectroscopy (DS) can serve as a tool to satisfy some PAT requirements. DS has been used in the medical field for quite some time and it may allow real-time process monitoring of biological cell culture parameters. DS has the potential to enable process optimization, automation, cost reduction, and a more consistent product quality. Dielectric spectroscopy is reviewed here as a tool to monitor biochemical processes. Commercially available dielectric sensing systems are discussed. The potential of this technology is demonstrated through examples of current and potential future applications in research and industry for mammalian and insect cell culture.  相似文献   

15.
The functional expression of olfactory receptors (ORs) is a primary requirement to utilize olfactory detection systems. We have taken advantage of the functional similarities between signal transduction cascades in the budding yeast Saccharomyces cerevisiae and mammalian cells. The yeast pheromone response pathway has been adapted to allow ligand-dependent signaling of heterologous expressed G-protein coupled receptors (GPCRs) via mammalian or chimeric yeast/mammalian Galpha proteins. Two different strategies are reported here which offer a positive screen for functional pairs. The OR and Galpha protein are introduced into the modified yeast cells such that they hijack the pheromone response pathway usually resulting in cell cycle arrest. The first strategy utilizes ligand-induced expression of a FUS1-HIS3 reporter gene to permit growth on a selective medium lacking histidine; the second to induce ligand-dependent expression of a FUSI-Hph reporter gene, conferring resistance to hygromycin. Validation of the systems was performed using the rat 17 receptor response to a range of aldehyde odorants previously characterized as functional ligands. Of these only heptanal produced a positive growth response in the concentration range 5 x 10(-8) to 5 x 10(-6) M. Induction conditions appear to be critical for functional expression, and the solvents of odorants have a toxic effect for the highest odorant concentrations. The preference of rat 17 receptor for the ligand heptanal in yeast has to be compared to concurrent results obtained with mammalian expression systems.  相似文献   

16.
Penetration of the nervous systems of suckling mice by prototype strains of the three mammalian reovirus serotypes was studied after footpad inoculation of a dose (10(7) PFU) representing 3.5 x 10(3) 50% lethal doses (LD50) for reovirus type 3 Dearing and less than 1 LD50 for reoviruses type 1 Lang and type 2 Jones. Type 3 Dearing entered both motor and sensory neurons; infected neurons were clearly detectable by immunohistochemical staining 19 h after inoculation. By day 2, a second cycle of infection had occurred, and by day 4, several hundred motor and sensory neurons and interneurons were infected. By this time, infection also involved large areas of the brain stem and brain. There was evidence of both retrograde and anterograde movement of viral antigen within axons and dendrites. Unexpectedly, reovirus type 1 Lang followed neuronal pathways as well as being disseminated in the bloodstream. Reovirus type 2 Jones also entered neurons. While the number of motor neurons and interneurons infected with type 1 Lang or type 2 Jones remained limited within the first 4 days after inoculation, infection of sensory neurons increased with time and reached a level by day 4 comparable to that observed after infection with type 3 Dearing. Viral antigen was also found in the brain stem and brain, but this infection was limited. These three strains multiplied in nonneuronal tissues. Connective tissue in the footpad was massively infected by all three strains 19 h after inoculation. By this time, foci of infection were also present in muscle and skin. Viral antigen was repeatedly observed in the endothelium of blood vessels and in the meninges after infection with type 1 Lang. The titer of type 1 Lang increased in the blood with time, which was not observed after infection with strains of the other two serotypes. In this study, we found that prototype strains of the three reovirus serotypes exhibited different degrees of neurotropism, all being capable of entering neurons. Transmission of the infection occurred through synapses rather than from cell body to cell body. Thus reovirus, like herpesvirus and rabies virus, is a good marker for the identification of neuronal pathways, although its capacity to grow in neurons, unlike that of herpesvirus and rabies virus, is restricted to newborn animals.  相似文献   

17.
《MABS-AUSTIN》2013,5(2):151-156
The administration of high doses of therapeutic antibodies requires large-scale, efficient, cost effective manufacturing processes. An understanding of how the industry is using its available production capacity is important for production planning, and facility expansion analysis. Inaccurate production planning for therapeutic antibodies can have serious financial ramifications. In the recent 5th Annual Report and Survey of Biopharmaceutical Manufacturing Capacity and Production, 434 qualified respondents from 39 countries were asked to indicate, among other manufacturing issues, their current trends and future predictions with respect to the production capacity utilization of monoclonal antibodies in mammalian cell culture systems. While overall production of monoclonals has expanded dramatically since 2003, the average capacity utilization for mammalian cell culture systems, has decreased each year since 2003. Biomanufacturers aggressively attempt to avoid unanticipated high production demands that can create a capacity crunch. We summarize trends associated with capacity utilization and capacity constraints which indicate that biopharmaceutical manufacturers are doing a better job planning for capacity. The results have been a smoothing of capacity use shifts and an improved ability to forecast capacity and outsourcing needs. Despite these data, today, the instability and financial constraints caused by the current global economic crisis are likely to create unforeseen shifts in our capacity utilization and capacity expansion trends. These shifts will need to be measured in subsequent studies.  相似文献   

18.
Improved, human-based packaging cell lines allow the production of high-titer, RCR-free retroviral vectors. The utility of these cell lines for the production of clinical grade vectors critically depends on the definition of optimal conditions for scaled-up cultures. In this work, a clone derived from the TE Fly GALV packaging cell (Duisit et al. Hum. Gene Ther. 1999, 10, 189) that produces high titers of a lacZ containing retroviral vector with a Gibbon Ape Leukemia Virus envelope glycoprotein was used. This clone can produce (2-5) x 10(6) PFU cm(-3) in small scale cultures and has been evaluated for growth and vector production in different reactor systems. The performances of fixed bed reactors [CellCube (Costar) and Celligen (New Brunswick)] and stirred tank reactors [microcarriers and clump cultures] were compared. The cells showed a higher apparent growth rate in the fixed bed reactor systems than in the suspension systems, probably as a result of the fact that aggregation and/or formation of clumps led to a reduced viability and reduced growth of cells in the interior of the clumps. As a consequence, the final cell density and number were in average 3- to 7-fold higher in the fixed bed systems in comparison to the suspension culture systems. The average titers obtained ranged from 0.5 to 2.1 x 10(7) PFU cm(-3) for the fixed bed and microcarrier systems, while the clump cultures produced only (2-5) x 10(5) PFU cm(-3). The differences in titers reflect cell densities as well as specific viral vector production rates, with the immobilization and microcarrier systems exhibiting an at least 10-fold higher production rate in comparison to the clump cultures. A partial optimization of the culture conditions in the Celligen fixed bed reactor, consisting of a 9-fold reduction of the seeding cell density, led to a 5-fold increased vector production rate accompanied by an average titer of 3 x 10(7) PFU cm(-3) (maximum titer (4-5) x 10(7) PFU cm(-3)) in the fixed bed reactor. The performance evaluation results using mathematical models indicated that the fixed bed bioreactor has a higher potential for retroviral vector production because of both the higher reactor productivity and the lower sensitivity of productivity in relation to the changes in final retrovirus titer in the range of 3 x 10(6) to 15 x 10(6) PFU cm(-3).  相似文献   

19.
Poly(ethylene) glycol (PEG) hydrogels have been successfully used to entrap mammalian cells for potential high throughput drug screening and biosensing applications. To determine the influence of PEG composition on the production of cellular protein, mammalian hepatocytes were maintained in PEG hydrogels for 7 days. Total cell viability, total protein production, and the production of two specific proteins, albumin and fibronectin, were monitored. Studies revealed that while PEG composition has no effect on cell viability, increasing amounts of PEG in the hydrogel decrease the amount of protein production by the cells after 7 days from 1.0 x 10(5) +/- 1.7 x 10(4) to 5.2 x 10(3) +/- 1.3 x 10(3) g accumulated protein/mL/million cells. Additionally, cells entrapped in PEG hydrogels produce greater amounts of protein than traditional monolayer culture (1.5 x 10(3) +/- 1.9 x 10(2) g accumulated protein/mL/million cells after 7 days). The addition of the synthetic peptide RGD to 10% PEG hydrogels altered the production of the proteins albumin and fibronectin. Hydrogels with the RGD sequence produced 287 +/- 27 ng/mL/million cells albumin after 7 days, an order of magnitude greater than monolayer cultures, whereas cells in hydrogels without the RGD sequence produced undetectable levels of albumin. Conversely, cells entrapped in 10% PEG hydrogels without the RGD sequence produced 1014 +/- 328 ng/mL/million cells fibronectin after 7 days, whereas 10% PEG hydrogels with the RGD sequence produced 200 +/- 58 ng/mL/million cells fibronectin after 7 days.  相似文献   

20.
Summary A system has been developed for growth and maintenance of mammalian cells in suspension culture at high density. In principle, the maintenance of constant levels of required nutrients coupled with the removal of toxic cell byproducts can support much higher suspension cell densities than may be obtained in conventional spinners. The system consisted of 4- or 40-liter reaction vessels equipped with a vertically supported rotating cylindrical filter. Agitation was provided by the magnetically driven, rotating filter. Fresh medium was supplied at a rate of 10 to 20 ml/h per 109 cells and the expended medium free of cells was withdrawn through the rotating filter. Both pH and dissolved O2 and CO2 were monitored and regulated. Walker 256 carcinosarcoma cells have been grown in these reactors to densities 10-to 30-fold greater than that obtained in Bellco spinners. In addition to high cell densities, the yield of cells per liter of medium used was 2- to 3-fold that obtained in the conventional systems. Both 4-and 40-liter versions of this reactor have been operated without the use of antibiotics. The 40-liter reactor also has been modified for chemostat operation. In a single run, for example, the Walker cell density was maintained between 6 and 10×106 cells/ml with a total yield of 8.7×1011 cells from 360 liters of medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号