首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemically functionalized congeners of N6-phenyladenosine and 1,3-dipropyl-8-phenylxanthine have been covalently coupled to fatty acids, diglycerides, and a phospholipid. The lipid-drug conjugates inhibit R-[3H]-phenylisopropyladenosine binding to A1-adenosine receptors in rat cerebral cortex membranes. A xanthine-phosphatidylethanolamine conjugate bound with a Ki value of 19 nM. Various xanthine esters of low potency are potential prodrugs. Amides of an adenosine amine congener (ADAC) with 18-carbon fatty acids exhibited Ki values at A1-adenosine receptors of 70 pM, representing a 130-fold enhancement over the affinity of the corresponding acetyl amide. The very high affinity of adenosine-lipid conjugates may be due to stabilization of these adducts in the phospholipid microenvironment of the receptor protein.  相似文献   

2.
A xanthine amine congener (XAC), an amine-functionalized derivative of 1,3-dipropyl-8-phenylxanthine, is an antagonist ligand for A2 adenosine receptors of human platelets. XAC inhibited 5'-N-ethylcarboxamidoadenosine (NECA)-induced stimulation of adenylate cyclase activity with a KB of 24 nM. [3H]XAC exhibits saturable, specific binding with a Kd of 12 nM and a Bmax of 1.1 pmol/mg protein at 37 degrees C. [3H]XAC binding in platelets is the first example of labeling of A2 adenosine receptors in which the potencies of adenosine agonists and antagonists in inhibiting binding are commensurate with their potencies at these receptors in functional studies. Furthermore, [3H]XAC is the first antagonist radioligand with high affinity at A2 adenosine receptors.  相似文献   

3.
Several analogs of caffeine have been investigated as antagonists at A2 adenosine receptors stimulatory to adenylate cyclase in membranes from rat pheochromocytoma PC12 cells and human platelets and at A1 adenosine receptors inhibitory to adenylate cyclase from rat fat cells. Among these analogs, 1-propargyl-3,7-dimethylxanthine was about 4- to 7-fold and 7-propyl-1,3-dimethylxanthine about 3- to 4-fold more potent than caffeine at A2 receptors of PC12 cells and platelets. At A1 receptors of fat cells, both compounds were about 2-fold less potent than caffeine. These caffeine analogs have an A1/A2 selectivity ratio of about 10-20 and are the first selective A2 receptor antagonists yet reported. The results may provide the basis for the further development of highly potent and highly selective A2 adenosine receptor antagonists.  相似文献   

4.
The structure-activity relationships of 63 adenosine analogs as agonists for the A1 adenosine receptors that mediate inhibition of adenylate cyclase activity in rat fat cells and for the A2 adenosine receptors that mediate stimulation of adenylate cyclase in rat pheochromocytoma PC12 cells and human platelets were determined. The lack of correspondence between the structure-activity relationships of these analogs at the A1 and A2 receptors appear definitive in terms of establishing the existence of A1 and A2 subclasses of adenosine receptors. However, significant differences in the agonist profiles at A2 receptors of platelet and PC12 indicate a certain degree of structural heterogeneity within the members of the A2 adenosine receptor subclass. Whether such differences are due to different species or different cell types is not known. A set of adenosine analogs, such as N6-cyclohexyl-, N6-R-, and S-1-phenyl-2- propyladenosines, 5'-N-ethylcarboxamidoadenosine and its N6-cyclohexyl derivative, 2-chloroadenosine, and 2-phenylaminoadenosine, appear to represent a series of analogs useful for pharmacological characterization of A1 and A2 classes of adenosine receptors.  相似文献   

5.
Extracellular adenosine is transported into chromaffin cells by a high-affinity transport system. The action of adenosine receptor ligands was studied in this cellular model. 5'-(N-Ethylcarboxamido)adenosine (NECA), an agonist of A2 receptors, activated adenosine transport. Km values for adenosine were 4.6 +/- 1.0 (n = 5) and 10.2 +/- 3.0 microM (n = 5) for controls and 100 nM NECA, respectively. The Vmax values were 66.7 +/- 23.5 and 170.2 +/- 30 pmol/10(6) cells/min for controls and 100 nM NECA, respectively. The A1 agonist N6-cyclohexyladenosine, the A1 antagonist 8-cyclopentyl-1, 3-dipropylxanthine, and the A1-A2 antagonist 1,3-dipropyl-8-(4-[(2-aminoethyl)amino]-carbonylmethyloxyphenyl)- xanthine did not significantly modify the adenosine transport in this system. Binding studies done with [3H]dipyridamole, a nucleoside transporter ligand, did not show changes in either the number or affinity of transporter sites after NECA treatment. This ligand can enter cells and quantifies the total number of transporters. The binding studies with [3H]-nitrobenzylthioinosine, which quantifies the plasma membrane transporters, showed a Bmax of 19,200 +/- 800 and 23,200 +/- 700 transporters/cell for controls and 100 nM NECA, respectively. No changes in the KD were obtained. The effects of NECA were not mediated through adenylate cyclase activation, because its action was not imitated by forskolin.  相似文献   

6.
A bovine brain adenosine A1 receptor cDNA encoding a 326 amino acid protein has been identified. This cDNA, which encodes a protein greater than 90% identical to analogous rat and dog receptors, was transiently expressed in COS-1 cells. Recombinant receptors exhibited the features of bovine A1 receptors that distinguish it from rat and canine receptors, including subnanomolar Ki for 1,3-dipropyl-8-cyclopentylxanthine, R-phenylisopropyl- adenosine (R-PIA) and xanthine amino conjugate, and the distinct potency order: R-PIA greater than S-PIA much greater than 5'-N-ethylcarboxamidoadenosine greater than 2'-chloroadenosine. The results indicate that the pharmacological differences between A1 adenosine receptors among species result from only minor differences in receptor structures.  相似文献   

7.
Both A1 and A2a Purine Receptors Regulate Striatal Acetylcholine Release   总被引:2,自引:2,他引:0  
The receptors responsible for the adenosine-mediated control of acetylcholine release from immunoaffinity-purified rat striatal cholinergic nerve terminals have been characterized. The relative affinities of three analogues for the inhibitory receptor were (R)-phenylisopropyladenosine greater than cyclohexyladenosine greater than N-ethylcarboxamidoadenosine (NECA), with binding being dependent of the presence of Mg2+ and inhibited by 5'-guanylylimidodiphosphate [Gpp(NH)p] and adenosine receptor antagonists. Adenosine A1 receptor agonists inhibited forskolin-stimulated cholinergic adenylate cyclase activity, with an IC50 of 0.5 nM for (R)-phenylisopropyladenosine and 500 nM for (S)-phenylisopropyladenosine. A1 agonists inhibited acetylcholine release at concentrations approximately 10% of those required to inhibit the cholinergic adenylate cyclase. High concentrations (1 microM) of adenosine A1 agonists were less effective in inhibiting both adenylate cyclase and acetylcholine release, due to the presence of a lower affinity stimulatory A2 receptor. Blockade of the A1 receptor with 8-cyclopentyl-1,3-dipropylxanthine revealed a half-maximal stimulation by NECA of the adenylate cyclase at 10 nM, and of acetylcholine release at approximately 100 nM. NECA-stimulated adenylate cyclase activity copurified with choline acetyltransferase in the preparation of the cholinergic nerve terminals, suggesting that the striatal A2 receptor is localized to cholinergic neurones. The possible role of feedback inhibitory and stimulatory receptors on cholinergic nerve terminals is discussed.  相似文献   

8.
A series of 15 N6-substituted 9-methyladenines have been assessed as antagonists of A2-adenosine receptor-mediated stimulation of adenylate cyclase in membranes of human platelets and rat PC12 cells and of A1-adenosine receptor-mediated inhibition of adenylate cyclases in membranes of rat fat cells and as inhibitors of binding of N6-R-[3H]phenylisopropyladenosine to A1-adenosine receptors in rat brain membranes. N6 substitution can markedly increase the potency of 9-methyladenine at A1 receptors, while having lesser effects or even decreasing potency at A2 receptors. Effects of N6 substituents on adenosine receptor activity of the 9-methyladenines are reminiscent of effects of N6 substituents on activity of adenosine, suggesting that N6 substituted 9-methyladenines bind to adenosine receptors in the same orientation as do N6-substituted adenosines. N6-Cyclopentyl-9-methyladenine with Ki values at the A1 receptors of 1.3 microM (fat cells) and 0.5 microM (brain) is at least 100-fold more potent than 9-methyladenine (Ki 100 microM, both receptors), while at the A2 receptors KB values of 5 microM (platelets) and 25 microM (PC12 cells) make it 5-fold more potent and equipotent, respectively, compared to 9-methyladenine (KB 24 microM, both receptors). N6-Cyclopentyl and several other N6-alkyl and N6-cycloalkyl analogs are selective for A1 receptors while 9-methyladenine is the most A2 receptor selective antagonist. The N6-R- and N6-S-(1-phenyl-2-propyl)-9-methyladenines, analogous to N6-R- and N6-S-phenylisopropyladenosines, exhibit stereoselectivity at both A1 and A2 receptors. Marked differences in potency of certain N6-substituted 9-methyladenines at the A2 receptors of human platelets and rat PC12 cells provide evidence that these are not identical receptors.  相似文献   

9.
Pharmacological profile of adenosine A2 receptor in PC12 cells   总被引:3,自引:0,他引:3  
The PC12 cell line, a clone isolated from a pheochromocytoma tumor of rat adrenal medulla, was shown to exclusively contain stimulatory adenosine (A2) receptors linked to adenylate cyclase (AC). AC was stimulated 6-7 fold by several agonists with a rank order of potency of 5'-N-Ethyl carboxamidoadenosine (NECA) greater than 2-Chloroadenosine (2-CADO) greater than (R)-N-Phenylisopropyladenosine (R-(-)-PIA) greater than N6-Cyclopentyladenosine (CPA) greater than N6-Cyclohexyladenosine (CHA) greater than S-(+)-PIA. AC activity was antagonized by a variety of adenosine receptor antagonists with a potency order of 1,3,-Dipropyl-8-(2-amino-4-chlorophenyl)xanthine (PACPX) greater than 1,3,-Diethyl-8-phenylxanthine (DPX) greater than 8-Phenyltheophylline greater than 3-Isobutyl-1-methylxanthine (IBMX) greater than 8-(p-sulfophenyl)theophylline (PST) greater than 7-(beta-chloroethyl)theophylline greater than theophylline = enprofylline = caffeine. Under conditions known to favour receptor-mediated Ni-coupled inhibition of AC, R-(-)-PIA failed to inhibit both basal and forskolin stimulated AC activity in PC12 cells, confirming the absence of an A1 mediated response. On the other hand, adenosine agonists inhibited AC activity in rat cortical membranes with a rank order of potency of CPA greater than R-(-)-PIA greater than CHA greater than NECA greater than S-(+)-PIA greater than 2-CADO. These findings suggest that PC12 cells are functionally deficient in an A1 receptor linked AC response but are efficiently coupled to A2 stimulatory receptors. The cells should prove useful for further study of A2 adenosine receptors and to establish selectivity profiles of compounds acting at both A1 and A2 receptors.  相似文献   

10.
Receptor binding studies (?)-[3H]dihydroalprenolol as the ligand revealed, in adrenalectomized rat fat cells, a 50% decrease in the number of β-adrenergic receptors. er cell with no change in the receptor affinity for this ligand. Adrenalectomy caused no change in the binding affinity for isoproterenol of both high affinity and low affinity populations of the β-adrenergic receptors. Guanine nucleotide sensitivity of the agonist binding to β-receptors was also unaltered by adrenalectomy. Adrenalectomy caused a 30–40% decrease in the maximal response of adenylate cyclase to (?)-isoproterenol only when guanine nucleotides were present in the assay, without altering the (?)-isoproterenol concentration giving half-maximal adenylate cyclase stimulation (Kact values). The maximal response of adenylate cyclase to Gpp(NH)p also was lower in adrenalectomized membranes, indicating a defect at the guanine nucleotide regulatory site. Removal of adenosine by addition of adenosine deaminase failed to reverse the decreased adenylate cyclase response to isoproterenol in adrenalectomized rats. However, in intact fat cells, in which cyclic AMP accumulation in response to isoproterenol was decreased by adrenalectomy, removal of adenosine almost completely corrected this defect. These results indicate that the observed changes in the number of β-adrenergic receptors and in the ability of guanine nucleotides to stimulate adenylate cyclase, though explaining the decreased adenylate cyclase responsiveness to catecholamines, do probably not contribute significantly to the mechanism by which adrenalectomy decreases the lipolytic responsiveness of adipocyte to catecholamines. In addition, this study also suggests that the increased sensitivity to adenosine of lipolysis reported in adipocytes from adrenalectomized rats may result from an action of adenosine at a post-adenylate cyclase step, possibly on the cyclic AMP phosphodiesterase.  相似文献   

11.
Photoaffinity labeling of A1-adenosine receptors   总被引:1,自引:0,他引:1  
The ligand-binding subunit of the A1-adenosine receptor has been identified by photoaffinity labeling. A photolabile derivative of R-N6-phenylisopropyladenosine, R-2-azido-N6-p-hydroxyphenylisopropyladenosine (R-AHPIA), has been synthesized as a covalent specific ligand for A1-adenosine receptors. In adenylate cyclase studies with membranes of rat fat cells and human platelets, R-AHPIA has adenosine receptor agonist activity with a more than 60-fold selectivity for the A1-subtype. It competes for [3H]N6-phenylisopropyladenosine binding to A1-receptors of rat brain membranes with a Ki value of 1.6 nM. After UV irradiation, R-AHPIA binds irreversibly to the receptor, as indicated by a loss of [3H]N6-phenylisopropyladenosine binding after extensive washing; the Ki value for this photoinactivation is 1.3 nM. The p-hydroxyphenyl substituent of R-AHPIA can be directly radioiodinated to give a photoaffinity label of high specific radioactivity (125I-AHPIA). This compound has a KD value of about 1.5 nM as assessed from saturation and kinetic experiments. Adenosine analogues compete for 125I-AHPIA binding to rat brain membranes with an order of potency characteristic for A1-adenosine receptors. Dissociation curves following UV irradiation at equilibrium demonstrate 30-40% irreversible specific binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the probe is photoincorporated into a single peptide of Mr = 35,000. Labeling of this peptide can be blocked specifically and stereoselectively by adenosine receptor agonists and antagonists in a manner which is typical for the A1-subtype. The results indicate that 125I-AHPIA identifies the ligand-binding subunit of the A1-adenosine receptor, which is a peptide with Mr = 35,000.  相似文献   

12.
Biotin-containing analogs of a potent agonist (N6-phenyladenosine) and a potent antagonist (1,3-dipropyl-8-phenylxanthine) of adenosine receptor activity have been synthesized. A spacer chain to the biotin moiety is attached in both cases to the para-position of the phenyl ring. Two biotin conjugates of N6-phenyladenosine differing only in the length of the spacer chain bind to the adenosine receptor and to avidin simultaneously. The shorter-chain derivative was more potent in inhibiting binding of N6-[3H]cyclohexyladenosine to rat cerebral cortical membranes (Ki of 11 nM in the absence of avidin, 36 nM for the avidin complex). Three biotin conjugates of 1,3-dipropyl-8-phenylxanthine bound competitively to the adenosine receptor, but only in the absence of avidin. The results are interpreted in terms of the possible orientation of the ligands at the receptor binding site.  相似文献   

13.
A new series of 1,3-dipropyl-8-(1-phenylacetamide-1H-pyrazol-3-yl)-xanthine derivatives has been identified as potent A(2B) adenosine receptor antagonists. The products have been evaluated for their binding affinities for the human A(2B), A(1), A(2A), and A(3) adenosine receptors. N-(4-chloro-phenyl)-2-[3-(2,6-dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-5-methyl-pyrazol-1-yl] (11c) showed a high affinity for the human A(2B) adenosine receptor K(i)=7nM and good selectivity (A(1), A(2A), A(3)/A(2B)>140). Synthesis and SAR of this novel class of compounds is presented herein.  相似文献   

14.
The action of endothelins (Et) on cAMP formation was studied in endothelial cells from rat brain microvessels. Et-1 and Et-3 had no action by themselves. They both inhibited cholera toxin stimulated adenylate cyclase by about 50%. K0.5 values were observed at 2 nM and 40 nM for Et-1 and Et-3 respectively, indicating an involvement of a low affinity Et-3 receptor. Coupling to adenylate cyclase was achieved by a pertussis toxin sensitive mechanism. Another action of endothelins in brain capillary endothelial cells was to stimulate phospholipase C. This action involved a low affinity Et-3 receptor and a pertussis toxin insensitive mechanism. It is concluded that in brain capillary endothelial cells, ETA like receptors are coupled to phospholipase C and to adenylate cyclase via two different mechanisms.  相似文献   

15.
Purification of an A1 adenosine receptor of rat testes was performed using a newly developed affinity chromatography system (Nakata, H. (1989) Mol. Pharmacol. 35, 780-786). The A1 adenosine receptor was solubilized with digitonin from rat testicular membranes and then purified more than 25,000-fold by sequential use of affinity chromatography on xanthine amine congener-immobilized agarose, hydroxylapatite chromatography, re-affinity chromatography on xanthine amine congener-agarose, and finally gel permeation chromatography on TSK-3000SW. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the final preparation showed a single broad band of Mr 41,000 by autoradiography after radioiodination. This Mr 41,000 peptide was also specifically labeled with an A1 adenosine receptor affinity labeling reagent. A high affinity A1 adenosine receptor antagonist, 8-cyclopentyl-1,3-[3H]dipropylxanthine, bound saturably to the purified receptor with a KD of approximately 1.4 nM. The purified receptor also showed essentially the same specificity for adenosine agonists and antagonists as the unpurified receptor preparations, although the affinities of the purified adenosine receptor for agonists were significantly low compared to those of unpurified receptor preparations indicating that the purified A1 adenosine receptor exists as a low agonist-high antagonist affinity state. Deglycosylation of the purified testis adenosine A1 receptors with endoglycosidase F produced an increase in the mobility of the receptor protein to an apparent Mr 30,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, similar to that of deglycosylated A1 adenosine receptors of rat brain membranes. Peptide maps of the purified testis and brain A1 adenosine receptors using trypsin and V8 protease suggest that these receptors show some structural homologies.  相似文献   

16.
The purpose of this work was to study vasoactive intestinal peptide (VIP) receptors and the adenylate cyclase response to VIP upon enterocytic differentiation of the human colon adenocarcinoma cell line Caco-2 in culture. The VIP-stimulated enzyme activity is very low, e.g. 20% above basal activity in undifferentiated cells (day 5) and is enhanced markedly at confluency reaching a maximum, e.g. 270%, above basal activity in fully differentiated cells (day 30). VIP potency is also slightly enhanced, the EC50 of VIP ranging from 0.31 nM at day 5 to 0.07 nM at day 30. Modifications of the adenylate cyclase system are not responsible for the development of VIP response. Indeed, forskolin-stimulated adenylate cyclase activity is unchanged during differentiation supporting no alteration of the enzyme catalytic subunit. The same holds true for NaF and guanosine 5'-(beta, gamma-imido)trisphosphate, indicating a constant activity of the guanine nucleotide regulatory unit which mediates hormonal stimulation of adenylate cyclase (Ns). This is further supported by the similar extent of cholera toxin-catalyzed [32P]ADP-ribosylation of the Ns protein that is observed during differentiation. In sharp contrast, a dramatic increase of VIP receptor concentration is observed ranging from 32 fmol/mg of protein at day 5 to 414 fmol/mg of protein at day 30. This is confirmed by affinity cross-linking experiments showing an increased specific incorporation of 125I-VIP in a major 66,000-dalton component during differentiation. A slight increase in receptor affinity is also observed during differentiation with Kd ranging from 0.39 nM at day 5 to 0.08 nM at day 30. These data indicate that one population of VIP receptors accumulates during Caco-2 cell differentiation, representing the crucial event in the development of adenylate cyclase response to the peptide.  相似文献   

17.
We have evaluated whether the type I adenosine receptor mediates adenosine's ability to inhibit thyrotropin-stimulated cyclic AMP generation and DNA synthesis in FRTL5 cells. The xanthine derivative 1,3-dipropyl-8-cyclopentylxanthine, a selective antagonist for the type 1 adenosine receptor, binds to FRTL5 with high affinity and specificity. 1,3-Dipropyl-8-cyclopentylxanthine does not alter basal cyclic AMP levels but does reverse adenosine's ability to inhibit thyrotropin-stimulated cyclic AMP generation. 1,3-Dipropyl-8-cyclopentylxanthine also potently inhibits thyrotropin-stimulated and dibutyryl cyclic AMP-stimulated [3H]-thymidine incorporation into DNA in FRTL5 cells. Thus, in FRTL5 cells, 1,3-dipropyl-8-cyclopentylxanthine displays both adenosine antagonist and adenosine agonist properties, the latter occurring at a site distal to cyclic AMP generation.  相似文献   

18.
Human rTNF-alpha (greater than or equal to U/ml) decreased PMN nondirected and directed migration to FMLP to approximately 50% of control. Adenosine (100 microM) almost completely restored hrTNF-inhibited migration (nondirected from 54 to 92% and directed migration to from 54 to 93% of control). The lowest concentration of adenosine that restored hrTNF-inhibited migration was 3 microM, and the adenosine analogue, 5'-(N-cyclopropyl)-carboxamido-adenosine (CPCA) was more potent than adenosine. Although CPCA binds to A2-receptors and stimulates adenylate cyclase, the reversal of hrTNF-inhibited chemotaxis was found to be independent of both PMN cAMP content and binding to A2-receptors, because neither 8-Br-cAMP nor pertussis adenylate cyclase restored hrTNF-inhibited PMN chemotaxis and the A2-receptor antagonist, 1,3-dipropyl-7-methylxanthine decreased CPCA stimulated cAMP but enhanced CPCA-restoration of hrTNF-inhibited chemotaxis. The effect of adenosine could be augmented by inhibition of adenosine uptake and decreased by adenosine deamination. Pentoxifylline, (3,7 dimethyl-1-[5 oxo-hexyl] xanthine), like adenosine also restored PMN chemotaxis inhibited by hrTNF. The adenosine receptor antagonist, 1,3-dipropyl-8(phenyl-p-acrylate)-xanthine (BW A1433U), decreased restoration of hrTNF-inhibited chemotaxis by CPCA or pentoxifylline. Thus, the inhibitory effect of hrTNF on PMN migration can be counteracted by adenosine, CPCA, pentoxifylline, and compounds that increase adenosine availability to the surface of the PMN. Inasmuch as an A1-selective agonist N6-cyclopentyladenosine was less active, and the action of the A2-selective agonist CPCA was enhanced by an A2-receptor antagonist, we hypothesize that neither A1 or A2 receptors are involved in adenosine restoration of hrTNF-inhibited chemotaxis. Further, increased cAMP, an A2-regulated event, does not cause the effect, and adenosine restoration of hrTNF-inhibited migration does not appear to be mediated by changes in PMN [F-actin], FMLP receptor expression, or cytosolic calcium. Hence, the restoration of hrTNF-inhibited chemotaxis is controlled by a novel cyclic AMP-independent action on the PMN surface.  相似文献   

19.
Synthesis and physicochemical properties of N-benzyl pyrimido[2,1-f]purinediones are described. These derivatives were synthesized by the cyclization of 7-chloropropylo-8-bromo-1,3-dimethyl- or 1,3-dipropyl xanthine derivatives with corresponding (un)substituted benzylamines. Dipropyl derivatives were obtained under microwave irradiation conditions either. The obtained compounds (1-20) were evaluated for their affinity to adenosine A1 and A2A receptors, selected compounds were additionally investigated for affinity to the A3 receptor subtype. The results of the radioligand binding assays to A1 and A2A adenosine receptors showed that most of the 1,3-dimethyl-9-benzylpyrimidopurinediones exhibited selective affinity to A2A receptors at micromolar or submicromolar concentrations (for example, derivative 9 with o-methoxy substituent displayed a Ki value of 0.699 microM at rat A2A receptor with more than 36-fold selectivity). Contrary to previously described arylpyrimido[2,1-f]purinediones dipropyl derivatives (compounds 15-20) showed affinity to both kinds of receptors increased, however A1 affinity increased to a larger extent, with the result that A2A selectivity was abolished. The best adenosine A1 receptor ligand was m-chlorobenzyl derivative 18 (Ki=0.089 microM and 5-fold A1 selectivity). Structure-activity relationships were discussed with the analysis of lipophilic and spatial properties of the investigated compounds. Pharmacophore model of adenosine A1 receptor antagonist was adopted for this purpose.  相似文献   

20.
We characterized highly selective receptors for PACAP, the pituitary adenylate cyclase activating peptide, in the tumoral acinar cell line AR 4-2J derived from the rat pancreas. PACAP, a novel hypothalamic peptide related to vasoactive intestinal peptide (VIP), was tested as the full natural 38-residue peptide (PACAP-38) and as an N-terminal amidated 27-residue derivative (PACAP-27). The binding sites showed considerable affinity for [125I]PACAP-27 (Kd = 0.4 nM) and PACAP-38, while their affinity for VIP and the parent peptide helodermin was 1000-fold lower. These receptors were coupled to adenylate cyclase, the potency of PACAP-38 and PACAP-27 (Kact = 0.2 nM) being much higher than that of VIP (Kact = 100 nM) and helodermin (Kact = 30 nM). Chemical cross-linking of [125I]PACAP-27 followed by SDS-PAGE and autoradiography revealed a specifically cross-linked peptide with an Mr of 68,000 (including 3000 for one PACAP-27 molecule).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号