首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Using stable transgenic rice plants, the promoters of 15 genes expressed in rice seed were analysed for their spatial and temporal expression pattern and their potential to promote the expression of recombinant proteins in seeds. The 15 genes included 10 seed storage protein genes and five genes for enzymes involved in carbohydrate and nitrogen metabolism. The promoters for the glutelins and the 13 kDa and 16 kDa prolamins directed endosperm-specific expression, especially in the outer portion (peripheral region) of the endosperm, whilst the embryo globulin and 18 kDa oleosin promoters directed expression in the embryo and aleurone layer. Fusion of the GUS gene to the 26 kDa globulin promoter resulted in expression in the inner starchy endosperm tissue. It should be noted that the 10 kDa prolamin gene was the only one tested that required both the 5' and 3' flanking regions for intrinsic endosperm-specific expression. The promoters from the pyruvate orthophosphate dikinase (PPDK) and ADP-glucose pyrophosphorylase (AGPase) small subunit genes were active not only in the seed, but also in the phloem of vegetative tissues. Within the seed, the expression from these two promoters differed in that the PPDK gene was only expressed in the endosperm, whereas the AGPase small subunit gene was expressed throughout the seed. The GUS reporter gene fused to the alanine aminotransferase (AlaAT) promoter was expressed in the inner portion of the starchy endosperm, whilst the starch branching enzyme (SBE1) and the glutamate synthase (GOGAT) genes were mainly expressed in the scutellum (between the endosperm and embryo). When promoter activities were examined during seed maturation, the glutelin GluB-4, 26 kDa globulin and 10 kDa and 16 kDa prolamin promoters exhibited much higher activities than the others. The seed promoters analysed here exhibited a wide variety of activities and expression patterns, thus providing many choices suitable for various applications in plant biotechnology.  相似文献   

3.
The expression of a 30 kD cysteine endoprotease (EP-B) was studied by in situ hybridization and immunomicroscopy to clarify its role in germinating barley grains. At the beginning of germination, EP-B mRNA was expressed in the scutellar epithelium and aleurone cells next to the embryo. Later, mRNA levels were highest in the aleurone layer proceeding to the distal end of the grain. During the first day of germination, EP-B protein was strongly localized to the germ aleurone and scutellar epithelium from where the secretion into the starchy endosperm began. Secretion was also observed to proceed along the aleurone layer to the distal end. These results show that EP-B is differentially localized during germination, and both scutellum and aleurone layer are able to synthesize and secrete EP-B protein.  相似文献   

4.
Free and conjugated sterols of endosperm, coats, scutellum, coleoptile and roots have been analysed at different germination stages in two wheat cultivars with different endosperm sterol phenotypes. It seems that sterol metabolism of the developing tissues, namely coleoptile and roots, is not affected by the sterol conjugation profile of the endosperm. Enough sterol is present in the mature embryo to supply the germinating axis during the observation period (144 hr at 16°). The data suggest that sterol is transferred from scutellum to coleoptile and roots during germination.  相似文献   

5.
6.
7.
NEGBI, M., 1984. The structure and function of the scutellum of the Gramineae. Four kinds of scutella, of which only the first is universally known, can be distinguished in the Gramineae. (1) The scutellum sew stricto , the kind most commonly described in textbooks. In this scutellum the only growth activity during germination is the development of every epithelial cell into a separate elongated papilla. These papillae are involved in secretion of hydrolases, gibberellins and other hormonal factors which in their turn activate the aleurone layer; and in absorption of the mobilized endosperm reserves. (2) The kind characteristic of Auma is found in several genera. In this the scutellar tip elongates during germination, reaches the distal end of the endosperm sac and develops papillae over its whole surface. (3) The kind found in Cizuniu in which the scutellar tip elongates and extends to the far end of the caryopsis during embryo development, but not during germination. In this scutellum only the abaxial surface faces the bulk of the storage endosperm and probably only this surface becomes papillate. Several bamboo genera have the kind of scutellum characterized by Melocannu . This scutellum has evolved as a storage organ and in mature caryopses the endosperm is reduced. This kind is associated with vivipary and with the presence of storage tissue in the pericarp.
The vascularization and the structure of the scutellar epithelium, as studied mainly in a limited number of species belonging to the first kind, are related to the functions of the scutellum. The scutellum has a prime role in controlling the mobilization of endosperm reserves.  相似文献   

8.
Localization of carboxypeptidase I in germinating barley grain   总被引:2,自引:0,他引:2       下载免费PDF全文
Activity measurements and Northern blot hybridizations were used to study the temporal and spatial expression of carboxypeptidase I in germinating grains of barley (Hordeum vulgare L. cv Himalaya). In the resting grain no carboxypeptidase I activity was found in the aleurone layer, scutellum, or starchy endosperm. During germination high levels of enzyme activity appeared in the scutellum and in the starchy endosperm but only low activity was found in the aleurone layer. No mRNA for carboxypeptidase I was observed in the resting grain. By day 1 of germination the mRNA appeared in the scutellum where its level remained high for several days. In contrast, little mRNA was observed in the aleurone layer. These results indicate that the scutellum plays an important role in the production of carboxypeptidase I in germinating barley grain.  相似文献   

9.
10.
11.
Thioredoxin and germinating barley: targets and protein redox changes   总被引:21,自引:0,他引:21  
Marx C  Wong JH  Buchanan BB 《Planta》2003,216(3):454-460
The endosperm and embryo of barley ( Hordeum vulgare L.) grain were investigated to relate thioredoxin h and disulfide changes to germination and seedling development. The disulfide proteins of both tissues were found to undergo reduction following imbibition. Reduction reached a peak 1 day earlier in the embryo than in the endosperm, day 1 vs. day 2. The profile in both cases resembled those observed with wheat and rice, i.e., the reduction of the storage proteins increased initially and then declined during the period of seedling growth. The extent of the increase in reduction observed with barley endosperm was, however, less pronounced than with the other cereals. Also, unlike wheat and rice, the storage proteins of the endosperm were highly reduced in the dry seed and the sulfhydryl content of glutelins showed no appreciable change during this period. The relative abundance of thioredoxin h during germination and early seedling growth differed in the embryo and endosperm: a progressive decrease in the endosperm (as seen with wheat) vs. an increase in the embryo. Thioredoxin h was found in the major seed tissues in characteristic forms. Three forms were found in the scutellum and aleurone, whereas two, which may represent isoforms, were identified in the root and the shoot. Using a recently developed strategy based on two-dimensional gel electrophoresis, several proteins were identified as specific targets for thioredoxin in the embryo following oxidation with H(2)O(2), among them barley embryo globulin 1, peroxiredoxin and acidic ribosomal protein P(3). The results confirm earlier findings with the endosperm of other cereals and extend the importance of thioredoxin-linked redox change to the germinating embryo for functions that potentially include dormancy, protection against reactive oxygen species, translation and the mobilization of storage proteins.  相似文献   

12.
Expansins are plant proteins that can induce extension of isolated cell walls and are proposed to mediate cell expansion. Three expansin genes were expressed in germinating tomato (Lycopersicon esculentum Mill.) seeds, one of which (LeEXP4) was expressed specifically in the endosperm cap tissue enclosing the radicle tip. The other two genes (LeEXP8 and LeEXP10) were expressed in the embryo and are further characterized here. LeEXP8 mRNA was not detected in developing or mature seeds but accumulated specifically in the radicle cortex during and after germination. In contrast, LeEXP10 mRNA was abundant at an early stage of seed development corresponding to the period of rapid embryo expansion; it then decreased during seed maturation and increased again during germination. When gibberellin-deficient (gib-1) mutant seeds were imbibed in water, LeEXP8 mRNA was not detected, but a low level of LeEXP10 mRNA was present. Expression of both genes increased when gib-1 seeds were imbibed in gibberellin. Abscisic acid did not prevent the initial expression of LeEXP8 and LeEXP10, but mRNA abundance of both genes subsequently decreased during extended incubation. The initial increase in LeEXP8, but not LeEXP10, mRNA accumulation was blocked by low water potential, but LeEXP10 mRNA amounts fell after longer incubation. When seeds were transferred from abscisic acid or low water potential solutions to water, abundance of both LeEXP8 and LeEXP10 mRNAs increased in association with germination. The tissue localization and expression patterns of both LeEXP8 and LeEXP10 suggest developmentally specific roles during embryo and seedling growth.  相似文献   

13.
14.
Northern hybridizations were used to study the site of synthesis of three carboxypeptidases (Cpases I-III) which occur in the starchy endosperm of germinating barley grain ( Hordeum vulgare L.). Further evidence was obtained by studying secretion of these enzymes from scutella or aleurone layers separated from germinating grains. Messenger RNA for Cpase II was detected only in developing grain, and the bulk of the mRNA was localized in the starchy endosperm. This suggests that Cpase II is synthesized at the site of its accumulation, the starchy endosperm. In contrast, Cpase I is expressed during germination and the predominant site of synthesis is the scutellum, from which it is secreted into the starchy endosperm. Cpase III is also synthesized during germination, but the bulk of it is synthesized in and secreted from the aleurone layer. Thus, the three carboxypeptidases, all of which seem to play a role in hydrolysis of the reserve proteins in the starchy endosperm during germination, have different sites of synthesis.  相似文献   

15.
16.
The family of 14-3-3 proteins is ubiquitous in eukaryotes and has been shown to exert an array of functions. We were interested in the possible role of 14-3-3 proteins in seed germination. Therefore, we studied the expression of 14-3-3 mRNA and protein in barley (Hordeum distichum L.) embryos during germination. With the use of specific cDNA probes and antibodies, we could detect individual expression of three 14-3-3 isoforms, 14-3-3A, 14-3-3B, and 14-3-3C. Each homolog was found to be expressed in barley embryos. Whereas protein levels of all three isoforms were constant during germination, mRNA expression was found to be induced upon imbibition of the grains. The induction of 14-3-3A gene expression during germination was different from that of 14-3-3B and 14-3-3C. In situ immunolocalization analysis showed similar spatial expression for 14-3-3A and 14-3-3B, while 14-3-3C expression was markedly different. Whereas 14-3-3A and 14-3-3B were expressed throughout the embryo, 14-3-3C expression was tissue specific, with the strongest expression observed in the scutellum and the L2 layer of the shoot apical meristem. These results show that 14-3-3 homologs are differently regulated in barley embryos, and provide a first step in acquiring more knowledge about the role of 14-3-3 proteins in the germination process.  相似文献   

17.
The scutellum is a shield-shaped structure surrounding the embryo axis in grass species. The scutellar epithelium (Sep) is a monolayer of cells in contact with the endosperm. The Sep plays an important role during seed germination in the secretion of gibberellins and hydrolytic enzymes and in the transport of the hydrolized products to the growing embryo. We identified 30 genes predominantly expressed after imbibition in the Sep as compared to other parts of the scutellum. A high proportion of these genes is involved in metabolic processes. Some other identified genes are involved in the synthesis or modification of cell walls, which may be reflected in the changes of cell shape and cell wall composition that can be observed during imbibition. One of the genes encodes a proteinase that belongs to a proteinase family typical of carnivorous plants. Almost nothing is known about their role in other plants or organs, but the scutellar presence may point to a "digestive" function during germination. Genes involved in the production of energy and the transport of peptides were also identified.  相似文献   

18.
Polyamine metabolism was evaluated in the embryo and the endosperm,during the early stages of seed germination, of two maize inbreds(Lo5 and B73) differing in the protein nitrogen content of thecaryopscs. On germination, the concentration of buffer-extractableproteins and of polyamines increases more quickly and to greatervalues in Lo5 than in B73. In the caryopses, the embryos havea higher polyamine content than the endosperms and in the seedlings,after three days of growth, the shoots show a higher polyaminecontent than in the case of the scutellum and the roots. Duringseed germination, spermidine is the main polyamine and its contentvaries while the spermine remains virtually constant. The polyaminesand protein pattern in the embryo and the endosperm of the twoinbreds are discussed in relation to the differences in theirgermination energy and early seedling growth.  相似文献   

19.
Tissues of barley caryopsis and seedling were examined for the protease, BAPAase, and an inhibitor. The enzyme was present in extracts of alevn-one but was absent from aleurone incubation media and extracts of: embryo with scutellum; seedling with scutellum and rootlets, and endosperm that was free of aleurone tissue. The enzyme was present in non-incubated aleurone and did not increase significantly during incubation under conditions where alpha-amylase increased in the medium and tissue. Addition of gibberellie acid produced no detectable increase in BAPAase. Extracts of endosperm had weak BAPAase-inhibitory activity; embryo or seedling extracts produced strong inhibition. The inhibitor present in these extracts was dialyzable.  相似文献   

20.
An HD‐Zip IV gene from wheat, TaGL9, was isolated using a Y1H screen of a cDNA library prepared from developing wheat grain. TaGL9 has an amino acid sequence distinct from other reported members of the HD‐Zip IV family. The 3′ untranslated region of TaGL9 was used as a probe to isolate a genomic clone of the TaGL9 homologue from a BAC library prepared from Triticum durum L. cv. Langdon. The full‐length gene containing a 3‐kb‐long promoter region was designated TdGL9H1. Spatial and temporal activity of TdGL9H1 was examined using promoter‐GUS fusion constructs in transgenic wheat, barley and rice plants. Whole‐mount and histochemical GUS staining patterns revealed grain‐specific expression of TdGL9H1. GUS expression was initially observed between 3 and 8 days after pollination (DAP) in embryos at the globular stage and adjacent to the embryo fraction of the endosperm. Expression was strongest in the outer cell layer of the embryo. In developed wheat and barley embryos, strong activity of the promoter was only detected in the main vascular bundle of the scutellum, which is known to be responsible for the uptake of nutrients from the endosperm during germination and the endosperm‐dependent phase of seedling development. Furthermore, this pattern of GUS staining was observed in dry seeds several weeks after harvesting but quickly disappeared during imbibition. The promoter of this gene could be a useful tool for engineering of early seedling vigour and protecting the endosperm to embryo axis pathway from pathogens during grain desiccation and storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号