首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Polyamines such as spermine and spermidine are required for growth ofEscherichia coli; they interact with nucleic acids, and they bind to ribosomes. Polyamines block porins and decrease membrane permeability, activities that may protect cells in acid. At high concentrations, however, polyamines impair growth. They impair growth more severely at high pH, probably due to their increased uptake as membrane-permeant weak bases. The role of pH is critical in understanding polyamine stress.  相似文献   

2.
Plasmids pKS5 and pKSrec30 carrying normal and mutant alleles of the Deinococcus recA gene controlled by the lactose promoter slightly increase radioresistance of Escherichia coli cells with mutations in genes recA and ssb. The RecA protein of D. radiodurans is expressed in E. coli cells, and its synthesis can be supplementary induced. The radioprotective effect of the xenologic protein does not exceed 1.5 fold and yields essentially to the contribution of plasmid pUC19-recA1.1 harboring the E. coli recA + gene in the recovery of resistance of the ΔrecA deletion mutant. These data suggest that the expression of D. radiodurans recA gene in E. coli cells does not complement mutations at gene recA in the chromosome possibly due to structural and functional peculiarities of the D. radiodurans RecA protein.  相似文献   

3.
Bacterial lipoproteins comprise a subset of membrane proteins that are covalently modified with lipids at the amino-terminal Cys. Lipoproteins are involved in a wide variety of functions in bacterial envelopes. Escherichia coli has more than 90 species of lipoproteins, most of which are located on the periplasmic surface of the outer membrane, while others are located on that of the inner membrane. In order to elucidate the mechanisms by which outer-membrane-specific lipoproteins are sorted to the outer membrane, biochemical, molecular biological and crystallographic approaches have been taken. Localization of lipoproteins on the outer membrane was found to require a lipoprotein-specific sorting machinery, the Lol system, which is composed of five proteins (LolABCDE). The crystal structures of LolA and LolB, the periplasmic chaperone and outer-membrane receptor for lipoproteins, respectively, were determined. On the basis of the data, we discuss here the mechanism underlying lipoprotein transfer from the inner to the outer membrane through Lol proteins. We also discuss why inner membrane-specific lipoproteins remain on the inner membrane.  相似文献   

4.
Sokawa et al. suggest that rel- strains of Escherichia coli possess abnormal protein synthesizing machinery, which cannot carry out normal protein synthesis when the supply of amino-acids is limited.  相似文献   

5.
Cytochrome bd from Escherichia coli is able to oxidize such substrates as guaiacol, ferrocene, benzohydroquinone, and potassium ferrocyanide through the peroxidase mechanism, while none of these donors is oxidized in the oxidase reaction (i.e. in the reaction that involves molecular oxygen as the electron acceptor). Peroxidation of guaiacol has been studied in detail. The dependence of the rate of the reaction on the concentration of the enzyme and substrates as well as the effect of various inhibitors of the oxidase reaction on the peroxidase activity have been tested. The dependence of the guaiacol-peroxidase activity on the H2O2 concentration is linear up to the concentration of 8 mM. At higher concentrations of H2O2, inactivation of the enzyme is observed. Guaiacol markedly protects the enzyme from inactivation induced by peroxide. The peroxidase activity of cytochrome bd increases with increasing guaiacol concentration, reaching saturation in the range from 0.5 to 2.5 mM, but then starts falling. Such inhibitors of the ubiquinol-oxidase activity of cytochrome bd as cyanide, pentachlorophenol, and 2-n-heptyl 4-hydroxyquinoline-N-oxide also suppress its guaiacol-peroxidase activity; in contrast, zinc ions have no influence on the enzyme-catalyzed peroxidation of guaiacol. These data suggest that guaiacol interacts with the enzyme in the center of ubiquinol binding and donates electrons into the di-heme center of oxygen reduction via heme b 558, and H2O2 is reduced by heme d. Although the peroxidase activity of cytochrome bd from E. coli is low compared to peroxidases, it might be of physiological significance for the bacterium itself and plays a pathophysiological role for humans and animals.  相似文献   

6.

Background  

Saccharomyces cerevisiae is the first eukaryotic organism for which a multi-compartment genome-scale metabolic model was constructed. Since then a sequence of improved metabolic reconstructions for yeast has been introduced. These metabolic models have been extensively used to elucidate the organizational principles of yeast metabolism and drive yeast strain engineering strategies for targeted overproductions. They have also served as a starting point and a benchmark for the reconstruction of genome-scale metabolic models for other eukaryotic organisms. In spite of the successive improvements in the details of the described metabolic processes, even the recent yeast model (i.e., i MM904) remains significantly less predictive than the latest E. coli model (i.e., i AF1260). This is manifested by its significantly lower specificity in predicting the outcome of grow/no grow experiments in comparison to the E. coli model.  相似文献   

7.
In this study, we developed a microplate sandwich analysis of Escherichia coli and Staphylococcus aureus bacterial pathogens based on the interaction of their cell wall carbohydrates with natural receptors called lectins. An immobilized lectin-cell-biotinylated lectin complex was formed in this assay. Here, we studied the binding specificity of several plant lectins to E. coli and S. aureus cells, and pairs characterized by high-affinity interactions were selected for the assay. Wheat germ agglutinin and Ricinus communis agglutinin were used to develop enzyme-linked lectinosorbent assays for E. coli and S. aureus cells with the detection limits of 4 × 106 and 5 × 105 cells/mL, respectively. Comparison of the enzyme-linked immonosorbent assay and the enzyme-linked lectinosorbent assay demonstrated no significant differences in detection limit values for E. coli. Due to the accessibility and universality of lectin reagents, the proposed approach is a promising tool for the control of a wide range of bacterial pathogens.  相似文献   

8.
Treponema denticola is a small anaerobic spirochete often isolated from periodontal lesions and closely associated with periodontal diseases. This bacterium possesses a particular arginine peptidase activity (previously called BANA-peptidase or trypsin-like enzyme) that is common to the three cultivable bacterial species most highly associated with severe periodontal disease. We recently reported the identification of the opdB locus that encodes the BANA-peptidase activity of T. denticola through DNA sequencing and mutagenesis studies. In the present study, we report expression of T. denticola OpdB peptidase in Escherichia coli. The opdB PCR product was cloned into pET30b and then transformed into the E. coli BL21 (DE3)/pLysS expression strain. Assays of enzymatic activities in E. coli containing T. denticola opdB showed BANA-peptidase activity similar to that of T. denticola. Availability of this recombinant expression system producing active peptidase will facilitate characterization of the potential role of this peptidase in periodontal disease etiology.  相似文献   

9.
10.
Solvent stress occurs during whole-cell biocatalysis of organic chemicals. Organic substrates and/or products may accumulate in the cellular membranes of whole cells, causing structural destabilization of the membranes, which leads to disturbances in cellular carbon and energy metabolism. Here, we investigate the effect of cyclohexanone on carbon metabolism in Escherichia coli BL21 and Corynebacterium glutamicum ATCC13032. Adding cyclohexanone to the culture medium (i.e., glucose mineral medium) resulted in a decreased specific growth rate and increased cellular maintenance energy in both strains of bacteria. Notably, carbon metabolism, which is mainly involved to increase cellular maintenance energy, was very different between the bacteria. Carbon flux into the acetic acid fermentation pathway was dominantly enhanced in E. coli, whereas the TCA cycle appeared to be activated in C. glutamicum. In fact, carbon flux into the TCA cycle in E. coli appeared to be reduced with increasing amounts of cyclohexanone in the culture medium. Metabolic engineering of E. coli cells to maintain or improve TCA cycle activity and, presumably, that of the electron transport chain, which are involved in regeneration of cofactors (e.g., NAD(P)H and ATP) and formation of toxic metabolites (e.g., acetic acid), may be useful in increasing solvent tolerance and biotransformation of organic chemicals (e.g., cyclohexanone).  相似文献   

11.
Various flavonoid glycosides are found in nature, and their biological activities are as variable as their number. In some cases, the sugar moiety attached to the flavonoid modulates its biological activities. Flavonoid glycones are not easily synthesized chemically. Therefore, in this study, we attempted to synthesize quercetin 3-O-glucosyl (1→2) xyloside and quercetin 3-O-glucosyl (1→6) rhamnoside (also called rutin) using two uridine diphosphate-dependent glycosyltransferases (UGTs) in Escherichia coli. To synthesize quercetin 3-O-glucosyl (1→2) xyloside, sequential glycosylation was carried out by regulating the expression time of the two UGTs. AtUGT78D2 was subcloned into a vector controlled by a Tac promoter without a lacI operator, while AtUGT79B1 was subcloned into a vector controlled by a T7 promoter. UDP-xyloside was supplied by concomitantly expressing UDP-glucose dehydrogenase (ugd) and UDP-xyloside synthase (UXS) in the E. coli. Using these strategies, 65.0 mg/L of quercetin 3-O-glucosyl (1→2) xyloside was produced. For the synthesis of rutin, one UGT (BcGT1) was integrated into the E. coli chromosome and the other UGT (Fg2) was expressed in a plasmid along with RHM2 (rhamnose synthase gene 2). After optimization of the initial cell concentration and incubation temperature, 119.8 mg/L of rutin was produced. The strategies used in this study thus show promise for the synthesis of flavonoid diglucosides in E. coli.  相似文献   

12.
13.
Escherichia coli K-12 was cultured under anaerobic conditions to form biofilm on carbon fiber electrodes in glucose-containing medium. The anodic current increased with the development of the biofilm and depended on the glucose concentration. Cyclic voltammetric results support the presence of a redox compound(s) excreted from E. coli cells in the biofilm. The compound remained in the film under conditions of continuous flow and gave a couple of oxidation and reduction waves, which may be assigned to a menaquinone-like compound based on the mid-point potential (−0.22 V vs Ag|AgCl at pH 7.1) and its pH dependence. The catalytic current started to increase around the anodic peak potential of the redox compound and also increased by the permeabilization of the E. coli cell membranes with ethylenediamine tetraacetic acid-treatment. The results indicate that the E. coli-excreted redox compound works as a mediator for the electron transfer from the E. coli cells to the electrode as the final electron acceptor. The activity of the redox compound in the E. coli-biofilm as a mediator with some mobility was also verified for diaphorase-catalyzed electrochemical oxidation of NADH.  相似文献   

14.
The monoamine neuromediators serotonin (5-HT), histamine, dopamine (DA), and norepinephrine (NE), added to an Escherichia coli K-12 strain MC 4100 culture upon inoculation, stimulate cell proliferation (determined from CFU formation) and biomass accumulation (monitored nephelometrically) during the late lag phase and the early exponential growth phase. These effects are less significant in the late exponential and stationary phase cultures. According to the concentration dependence of the stimulatory effects, the neuromediators can be classified into two groups: (i) the catecholamines DA and NE, whose effects increase almost linearly with increasing concentrations within the range of 0.1–100 μM, and (ii) histamine and 5-HT, which are characterized by bell-shaped concentration dependence curves with maxima at 0.1 (histamine) and 1 μM (5-HT). On an agar-containing medium, the growing E. coli population includes solitary cells and compact cell groups (microcolonies). In this system, both tested catecholamines exert a relatively weak stimulatory influence that manifests itself as an increase in the number of both solitary cells and cell groups, and occurs at concentrations of 10 μM and higher. In analogy to the culture grown on the liquid medium, 5-HT and histamine are distinguished by nonlinear concentration dependence curves: their effects peak at 0.1 μM (histamine) or 1 μM (5-HT); an increase in the neuromediator concentrations results in a decrease in effects that are enhanced by further increasing the concentrations to the submillimolar range. DA increases the percentage of solitary cells, whereas the other tested amines promote cell group formation. The results are interpreted in terms of specific (probably receptor-dependent) mechanisms of action in the neuromediators involved.  相似文献   

15.
The gene encoding sucrose phosphorylase (742sp) in Leuconostoc mesenteroides NRRL B-742 was cloned and expressed in Escherichia coli. The nucleotide sequence of the transformed 742sp comprised an ORF of 1,458 bp giving a protein with calculated molecular mass of 55.3 kDa. 742SPase contains a C-terminal amino acid sequence that is significantly different from those of other Leu. mesenteroides SPases. The purified 742SPase had a specific activity of 1.8 U/mg with a K m of 3 mM with sucrose as a substrate; optimum activity was at 37°C and pH 6.7. The purified 742SPase transferred the glucosyl moiety of sucrose to cytosine monophosphate (CMP). Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Ruan L  He W  He J  Sun M  Yu Z 《Antonie van Leeuwenhoek》2005,87(4):283-288
Previous work from our laboratory has shown that most of Bacillus thuringiensis strains possess the ability to produce melanin in the presence of l-tyrosine at elevated temperatures (42 °C). Furthermore, it was shown that the melanin produced by B. thuringiensis was synthesized by the action of tyrosinase, which catalyzed the conversion of l-tyrosine, via l-DOPA, to melanin. In this study, the tyrosinase-encoding gene (mel) from B. thuringiensis 4D11 was cloned using PCR techniques and expressed in Escherichia coli DH5 . A DNA fragment with 1179 bp which contained the intact mel gene in the recombinant plasmid pGEM1179 imparted the ability to synthesize melanin to the E. coli recipient strain. The nucleotide sequence of this DNA fragment revealed an open reading frame of 744 bp, encoding a protein of 248 amino acids. The novel mel gene from B.thuringiensis expressed in E. coli DH5 conferred UV protection on the recipient strain.  相似文献   

17.
A glucosyltransferase (GT) of Phytolacca americana (PaGT3) was expressed in Escherichia coli and purified for the synthesis of two O-β-glucoside products of trans-resveratrol. The reaction was moderately regioselective with a ratio of 4′-O-β-glucoside: 3-O-β-glucoside at 10:3. We used not only the purified enzyme but also the E. coli cells containing the PaGT3 gene for the synthesis of glycoconjugates. E. coli cell cultures also have other advantages, such as a shorter incubation time compared with cultured plant cells, no need for the addition of exogenous glucosyl donor compounds such as UDP-glucose, and almost complete conversion of the aglycone to the glucoside products. Furthermore, a homology model of PaGT3 and mutagenesis studies suggested that His-20 would be a catalytically important residue.  相似文献   

18.
Based on the available experimental data, we developed a kinetic model of the catalytic cycle of imidazologlycerol-phosphate synthetase from Escherichia coli accounting for the synthetase and glutaminase activities of the enzyme. The rate equations describing synthetase and glutaminase activities of imidazologlycerol-phosphate synthetase were derived from this catalytic cycle. Using the literature data, we evaluated all kinetic parameters of the rate equations characterizing individually synthetase and glutaminase activities as well as the contribution of each activity depending on concentration of the substrates, products, and effectors. As shown, in the presence of 5 -phosphoribosylformimino-5-aminoimidazolo-4-carboxamideribonucleotide (ProFAR) and imidazologlycerol phosphate (IGP) glutaminase activity dominates over synthetase activity at sufficiently low concentrations of 5 -phosphoribulosylformimino-5-aminoimidazolo-4-carboxamideribonucleotide (PRFAR). Increased PRFAR concentrations resulted in decreased contribution of glutaminase activity and, consequently, increased the contribution of synthetase activity in the enzyme functioning.  相似文献   

19.
Escherichia coli has commonly been associated with diarrheal illness in humans and animals. Recently, E. albertii has been reported to be a potential pathogen of humans and animals and to be carried by wild birds. In the present study, the prevalence and genetic characteristics of intimin-producing E. coli and E. albertii strains were evaluated in wild birds in Korea. Thirty one of 790 Enterobacteriaceae strains from healthy wild birds were positive for the intimin gene (eaeA) and twenty two of the 31 strains were identified as atypical enteropathogenic E. coli (aEPEC) that did not possess both EAF and bfpA genes. A total of nine lactose non-fermenting coliform bacterial strains were identified as E. albertii by PCR and sequence analysis of housekeeping genes. A total of 28 (90.3%) eaeA-positive strains were isolated from waterfowl. Fifteen aEPEC (68.2%) and two E. albertii (22.2%) strains had a β-intimin subtype and 14 aEPEC strains harboring β-intimin belonged to phylogenetic group B2. AU eaeA-positive E. albertii and 3 aEPEC strains possessed the cytolethal distending toxin gene (cdtB). The eaeA-positive E. coli and E. albertii strains isolated from healthy wild birds need to be recognized as a potential pathogroup that may pose a potential threat to human and animal health. These findings indicate that eaeA-positive E. coli as well as E. albertii can be carried by wild birds, posing a potential threat to human and animal health.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号