首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
When cells of mouse myelomonocytyc leukemia cell line, WEHI-3B, were cultured in the presence of actinomycin D plus the serum which was obtained from mice injected with bacterial endotoxin, i.e., lipopolysaccharide, their histidine decarboxylase (l-histidine carboxy-lyase, EC 4.1.1.22) (HDC) activity increased about 100-fold with a peak at 48 h. According to the increase in HDC activity, the expression of surface antigens associated with macrophages, such as Mac II, Mac III and Ia, increased markedly on WEHI-3B cells as well as their morphological changes to macrophages. Histamine levels in the culture medium increased concomitantly with the increase in the HDC activity in WEHI-3B cells, whereas the histamine contents inside the cells did not increase remarkably. Furthermore, the addition of lipopolysaccharide to the culture medium caused an additional 2-fold increase in the HDC activity of WEHI-3B cells. These results indicate that the increase in HDC activity in WEHI-3B cells may represent an event in the process of the differentiation to macrophages.  相似文献   

2.
When peritoneal resident cells (PRCs) of genetically mast cell-deficient WBB6F1-W/Wv mice were cultured in vitro for 5 h at 37 degrees C, their histidine decarboxylase [HDC, L-histidine carboxylase, E.C. 4.1.1.22] activity increased 10-fold. Since inhibitors for energy production and mRNA and protein syntheses inhibited this increase of HDC activity, it appeared to represent de novo synthesis of the enzyme, i.e., induction. This increase was followed by an increase in the amount of histamine in the culture medium of the cells, indicating that histamine synthesized by the induced HDC was not stored in the cells but was quickly released. Mast cells were not involved in the HDC induction, because the extents of HDC induction in PRCs of W/Wv and wild type +/+ mice were similar. The removal of T cells with anti-Thy-1,2 antibody and complement from the PRCs did not affect the HDC induction, but the removal of phagocytes decreased the induction to one-tenth in spite of a 2-fold increase in the proportion of B cells in the PRCs. After separation of the PRCs into adherent and non-adherent fractions, the increase in HDC activity was found to be associated with the adherent fraction that was mostly positive to esterase staining. These results suggest that HDC was induced in peritoneal macrophages.  相似文献   

3.
The transport of cationic amino acids has been investigated in mouse peritoneal macrophages cultured in vitro. The transport activity for lysine was rather low in cells cultured for 1 h and increased slightly in cells cultured for 12 h. This increase varied with the serum lot used in the culture medium and was suppressed by polymyxin B, suggesting that the transport activity is induced by endotoxins in the serum. When the macrophages were cultured in the medium containing 1 ng/ml lipopolysaccharide, the transport activity for lysine increased by more than 10-fold. The transport activity for lysine induced by lipopolysaccharide has been characterized. Lysine was transported mainly by a Na(+)-independent, saturable system. The uptake of lysine was potently inhibited by extracellular cationic amino acids, but not by neutral amino acids tested. In addition, transport of lysine showed trans-stimulation. From these results, we have concluded that the transport activity for cationic amino acids is potently induced by lipopolysaccharide and that the characteristics of the induced activity is consistent with those of system y+.  相似文献   

4.
The ability to grow lymphoid and myeloid cells in serum-free culture medium allows researchers to analyze the factors and mechanisms required for hemopoietic cell growth and differentiation without the interference of undefined serum components. Therefore, we used a serum-free medium, RITC 55-9 that consisted of modified Dulbecco's MEM supplemented with bovine serum albumin (BSA), transferrin (Tf) and insulin (Ins) to culture human T lymphoid (Mo), murine myelomonocytoid (WEHI-3B) and murine interleukin (IL)-3-dependent (32Dcl/H4) cell lines. Mo was maintained in RITC for more than 8 months and had a mean viability of 59% and the same doubling times as in serum-containing medium (SCM). Under these conditions, Mo cells produced hemopoietic colony-stimulating activity that included production of a basophil/eosinophil differentiation factor of similar content to that produced in SCM. WEHI-3B cells grown for more than 12 months in RITC, or for more than 3 months in RITC without Tf and Ins, had a doubling time of 20 h, whereas cells maintained in protein-free RITC showed a 2-fold increase in doubling time then died within 3 months. The IL-3 production by WEHI-3B cells cultured in RITC was higher than the production by cells grown in SCM. When IL-3 was assayed in 32Dcl/H4 cells that had been maintained in RITC for more than 4 months, a lower response to IL-3 was found, an indication that components other than the BSA, Tf and Ins in fetal calf serum are required for optimal cell growth and differentiation.  相似文献   

5.
Dengue virus multiplication in cultures of a murine myelomonocytic cell line (WEHI-3) as well as mouse peritoneal macrophages was enhanced by treatment of the cells with lipophilic derivatives of muramyl peptides for 2 or 3 days before virus inoculation, but not for 2 hr before virus inoculation or during the adsorption period. The infection-enhancing activity of the materials was dependent on their chemical structure, correlating with their immunoadjuvanticity. The infection enhancement in WEHI-3 cells was due primarily to an increase in the number of virus-infected cells which was accompanied by an increased cellular capacity to bind latex particles to their cell surfaces.  相似文献   

6.
The purpose of our study was evaluation of functioning of WEHI-3B (an mouse cell line producing IL-3) cells encapsulated in hollow fibers (HF). In vitro: the WEHI-3B cells were encapsulated in HF of polypropylene K600 silikonized, and cultured over two weeks. In vivo: the encapsulated WEHI-3B after weeks culture, were implanted subcutaneously into mice for 1 week. After explantation encapsulated WEHI 3-B were cultured again in culture medium for one week. The production of IL-3 by encapsulated WEHI-3B cells was assessed by evaluation of IL-3 dependent, BaF3 cells viability. The percent number of one day survival of BaF3 cells in the culture medium supplemented with 15% of encapsulated WEHI-3B in vitro or encapsulated WEHI-3B after in vivo conditioned medium was comparable with positive control. Possible replacement of recombinant cytokines with HF encapsulated cytokine-producing cells may be a chance for continous supplementation of the factors for hematopoietic stem cells differentiation.  相似文献   

7.
The use of different myeloid leukemic cell lines (WEHI-3B D+ and M1) and different sources of factors has led to discrepancies concerning the identity of factors capable of inducing differentiation in leukemic cells. We have biochemically fractionated medium conditioned by one such source (Krebs II ascites cells) and assayed fractions for their bone marrow colony-stimulating activity as well as their differentiation-inducing activity for WEHI-3B D+ and M1 cells. This resulted in the resolution of four distinct molecular species with differentiation-inducing activity. One activity was purified to homogeneity and shown by a variety of biochemical, biological, and receptor-binding criteria to be authentic granulocyte colony-stimulating factor (G-CSF). A second activity was identified as granulocyte-macrophage colony-stimulating factor (GM-CSF). Two other activities termed LIF-A and LIF-B (leukemia inhibitory factor) were shown to probably be different glycosylation variants of the same protein and one of these (LIF-A) was purified 12,000-fold to homogeneity. G-CSF induced differentiation in both WEHI-3B D+ and at higher concentrations M1 cells while GM-CSF weakly induced differentiation in WEHI-3B D+ cells. LIF-A had no colony-stimulating activity and induced differentiation in and inhibited the proliferation of only M1 cells. Each factor bound to a unique cell surface receptor with no evidence of direct cross-reactivity.  相似文献   

8.
The levels of class II major histocompatibility complex (MHC) antigens (la antigens) on cells of a cultured B lymphoma line (WEHI-279) were significantly increased after 24 hr incubation with medium conditioned by concanavalin A-stimulated mouse or rat spleen cells, or by an azobenzenearsonate- (ABA) specific T cell clone that had been stimulated with ABA-coupled spleen cells or concanavalin A. The levels and properties of the la-inducing activity correlated with those of interferon-gamma (IFN-gamma) measured by inhibition of virus plaque formation. Both the la-inducing activity and the IFN-gamma from the T cell clone had an apparent m.w. of 40,000 determined by gel filtration, were sensitive to treatment with trypsin or exposure to pH 2, but were stable to heat (56 degrees C, 1 hr). The induction of la antigens on WEHI-279 cells was dose-dependent, and the maximum response occurred at a concentration corresponding to 1 to 2 U/ml of antiviral activity. This T cell-derived IFN-gamma-like molecule also increased the expression of cell surface la antigens on another B cell line (WEHI-231), and cell lines of macrophage (J774) and myeloid (WEHI-3B and WEHI-265) origin. Furthermore, in all cases the levels of class I MHC (H-2K or H-2D) antigens were also increased. Similar patterns of induction of Ia and H-2 antigens were obtained with supernatants containing IFN-gamma produced by a monkey cell line (COS) that had been transfected with a plasmid bearing the cloned murine IFN-gamma gene. This activity was sensitive to pH 2 and was not present in the supernatant from COS cells that were not transfected with the murine IFN-gamma gene. These results established that IFN-gamma is the T cell-derived molecule that induces the enhanced expression of Ia and H-2 antigens on B cells and macrophages. A major physiologic role of IFN-gamma may be to regulate immune function through the enhanced expression of MHC antigens.  相似文献   

9.
When mouse bone marrow-derived mast cells (BMMC) are cocultured with a confluent layer of mouse 3T3 fibroblasts in the presence of WEHI-3-conditioned medium, the mast cells undergo a phenotypic change toward that of a connective tissue mast cell, and the fibroblasts increase their synthesis of globopentaosylceramide. We now demonstrate that fibroblasts lose their contact inhibition and multiply such that by the 2nd and the 4th wk of coculture there are, respectively, approximately four-fold and six-fold more fibroblasts than in the cultures that are not exposed to BMMC. This in vitro increase in the number of fibroblasts is dependent on the number of mast cells (over the range of 6 x 10(4) to 1 x 10(6) BMMC/culture) initially seeded with the fibroblasts and on the concentration of WEHI-3-conditioned medium present during the coculture. That the fibroblasts also multiply in BMMC/fibroblast cocultures exposed to synthetic IL-3 or to purified IL-3 indicates that IL-3 is a component in WEHI-3-conditioned medium that induces mast cells to produce the fibroblast growth factor. The number of fibroblasts does not increase if fibroblasts are exposed to lysates of BMMC, or to BMMC-derived conditioned medium, or if the two cell types are separated from one another during the coculture with a 3-microns filter or a 0.4-microns filter. Thus, IL-3-activated BMMC must be in proximity to fibroblasts to induce them to multiply. Because of their increased numbers per culture dish, total fibroblasts that were cocultured with mast cells synthesized approximately two-fold more 35S-labeled proteoglycans, incorporated approximately 3-fold more [3H] proline into collagenase-sensitive proteins, and had substantially more alpha 2(I) collagen mRNA than fibroblasts that were maintained in the absence of mast cells. These is vitro studies reveal a sequence by which IL-3-activated mast cells may play a role in the induction of fibrosis.  相似文献   

10.
Injection of Staphylococcal enterotoxin A (SEA) into WBB6F1-W/WV mice genetically deficient in mast cells resulted in a 10-fold increase in the histidine decarboxylase [HDC, L-histidine carboxylase, EC 4.1.1.22] activity of their spleen. The nature of the spleen cells responsible for this increased HDC activity was studied. The HDC induction by SEA was abolished on day 1 after X-ray irradiation of the mice at 400 rad and restored by transplantation of bone marrow cells from normal WBB6F1-+/+ littermates into the X-ray irradiated WBB6F1-W/WV mice. Transplantation of cells from other organs of the normal mice, such as the thymus, mesenteric lymph node and spleen, did not restore the HDC increase significantly. Transplantation of cultured mast cells also did not restore the increase. Moreover, the high HDC activity of spleen cells induced by SEA was not affected by their treatment with anti-Thy-1,2 antibody and complement. Depletion of phagocytes from the spleen by treatment with carbonyl iron resulted in decrease in HDC activity. These results suggested that phagocytic cells derived from haemopoietic stem cells of the bone marrow were responsible for the increase in HDC activity induced by SEA.  相似文献   

11.
12.
The interleukin-2-dependent mouse natural killer (NK) cell line NKB61A2 concomitantly exhibits NK and natural cytotoxic (NC) activities. This was determined by the cells' ability to lyse both the NK-sensitive YAC-1 lymphoma and the NC-sensitive WEHI-164 fibrosarcoma cell lines in a 4- and 18-hour 51Cr release assay, respectively. Cell-free supernatant from NKB61A2 cells grown in culture for 48 h had substantial lytic activity against WEHI-164. The mouse mast cell line PT18-A17 and the rat basophilic leukemia cell line RBL-2H3, which both express NC activity, also produced a soluble factor during culture which lysed WEHI-164 cells. This activity was increased in the basophilic/mast cells by crossbridging the surface IgE receptors. Similar results were obtained by triggering the basophilic NC cells with the calcium ionophore ionomycin and the tumor promoter phorbol-12-myristate-13-acetate (PMA). Such triggering of NKB61A2 cells, however, did not significantly increase their NC activity. Interestingly, both ionomycin and PMA had an inhibitory effect on the NK activity of NKB61A2. Recently it has been found that tumor necrosis factor (TNF) is a major mediator of NC activity. To determine if the soluble factor responsible for the NC activity of the NK clone was related to TNF, a rabbit polyclonal antiserum to mouse TNF was tested against the cell-free culture medium of NKB61A2, PT18-A17, RBL-2H3 and murine recombinant TNF (Mu-rTNF). The lytic activity of the culture medium from all these cells and the Mu-rTNF control was abrogated by this antibody. These data suggest that the murine cell line NKB61A2 has both NK and NC activities and that the NC activity is due to a factor immunologically similar to TNF. In addition, the enhancement of NC activity in the NK cell line is apparently under control by a separate pathway, different from that in the basophilic cells.  相似文献   

13.
Abstract: We investigated the effect of lipopolysaccharide (LPS) and various inflammatory cytokines on the histidine decarboxylase (HDC) activity in cultured cells of the rat embryonic brain. Histaminergic neuronal cell bodies were supposed to exist in cultured cells of the diencephalon but not in those of the cortex. The HDC activity was elevated by adding LPS and interleukin-1 β (IL-1β) but not by tumor necrosis factor-α (TNF-α) and IL-6 to the mixed primary cultures of diencephalon. In the adherent cell fraction of the cultured diencephalon cells, HDC activity was also enhanced by LPS and IL-1β. In a similar manner, LPS augmented HDC activity in the mixed primary culture of cerebral cortical cells and in its adherent cell fraction. The effects of IL-1β but not LPS in the mixed primary culture of diencephalon were canceled by a prior exposure to cytosine-β- d -arabinofuranoside. The changes in HDC activity after exposure to LPS for 12 h were not accompanied by increased mRNA levels. In these cell cultures, mast cells were not detected by Alcian Blue staining. These results indicated the presence of the third type of HDC-bearing cell besides neurons and mast cells in the brain. The increase of HDC activity by IL-1β might be due to cell proliferation.  相似文献   

14.
A simple, quantitative assay method for microbicidal activity of phagocytic cells was devised using normal mouse peritoneal macrophages as effector cells and Candida parapsilosis as target cells. The macrophages were seeded in 96-multiwell tissue culture plates and infected with serially diluted Candida cells. Outgrowth of Candida cells in each well was estimated after a 48-hr incubation period. The maximum number of microbes killed on macrophage monolayers was then determined. The conditioned medium of L-929 cells (L-CM) influenced the fungicidal activity of the macrophages a great deal. An addition of L-CM, to 20% of the culture medium, stimulated the killing activity more than 128-fold, compared with no addition of L-CM. In the medium containing the L-CM macrophages spread very well on the plastic with several dendritic processes, whereas cells spread poorly and gradually cytolysed in the medium lacking L-CM. It was found that muramyl dipeptide at 100 μg/ml and E. coli lipopolysaccharide at 1–10 μg/ml stimulated the activity 4 to 16 times. An application of this method to destroying other kinds of microbes, measuring the activity of other phagocytes, and screening immunomodulators was discussed.  相似文献   

15.
16.
Mouse mast cells were differentiated and grown by culturing bone marrow cells in medium containing 2 X 10(-10) M purified interleukin 3 (IL 3). The cells obtained were similar in ultrastructure, membrane antigen phenotype, proteoglycan type, and lipid products generated upon immunologic activation to mast cells differentiated in culture by WEHI-3-conditioned medium (WEHI-3-CM) and by concanavalin A (Con A) splenocyte-conditioned medium. Phenotypically, these cells expressed IgE receptors and H-2 antigens and were recognized by a monoclonal antibody (B23.1) that did not react with mouse serosal heparin-containing mast cells. The classic phenotypic markers of mouse T cells or macrophages were not detected. The mouse mast cells differentiated with IL 3 as well as those differentiated in WEHI-3-CM incorporated [35S]sulfate into a nonheparin proteoglycan of 150,000 to 200,000 m.w. Most of the 35S-labeled macromolecules were degraded by chondroitinase ABC to yield only two disaccharides, which co-chromatographed on ascending thin layer chromatography with delta Di-4S and delta Di-diSE; thus, the proteoglycan in these cells is composed of chondroitin sulfate E glycosaminoglycans. After sensitization with monoclonal IgE, washing, and antigen activation, the IL 3 differentiated cells released the preformed mediator beta-hexosaminidase and generated and released two major classes of lipid mediators. The quantities of leukotriene C4 (LTC4), leukotriene B4 (LTB4), and platelet-activating factor (PAF-acether) generated/10(6) cells were 17, 3.0, and 3.1 ng, respectively. The ratio of these three lipid mediators was similar to that obtained from mast cells differentiated in WEHI-3-CM and in Con A-conditioned medium. Thus, T cell-derived IL 3 is the component present in the conditioned media that is required for differentiation and growth of the subclass of mast cells containing chondroitin sulfate E proteoglycan, designated E-MC. The IL 3-dependent E-MC may represent the in vitro counterpart of the T-cell-dependent mucosal mast cell, suggesting in turn that the production of LTC4 and LTB4 and of PAF-acether may play a role in adaptive intestinal immunity to helminthic parasites.  相似文献   

17.
When membrane Ig (mIg) on the surface of B lymphocytes is cross-linked using anti-Ig antibodies, the enzyme phospholipase C (PLC) is activated to cleave inositol phospholipids. Tyrosine kinase inhibitors have been reported to inhibit this event. Therefore, we investigated the effect of cross-linking of mIg on the state of tyrosine phosphorylation of PLC activity in two murine B cell lines and in normal resting mouse B cells. Proteins from lysates of stimulated or unstimulated cells were immunoprecipitated with an antiphosphotyrosine antibody and subsequently assayed for PLC activity. Treatment of the B cell line WEHI-231 with anti-IgM led within 15 to 30 s to a 10- to 20-fold increase in tyrosine-phosphorylated PLC activity. Inositol trisphosphate generation by WEHI-231 cells stimulated under the same conditions demonstrated similar kinetics. Normal resting B cells treated with anti-IgM or anti-IgD demonstrated 2.5- and 4-fold increases, respectively, of tyrosine-phosphorylated PLC activity. To identify the isozyme of PLC that was phosphorylated, we immunoprecipitated PLC-gamma 1 or PLC-gamma 2 with specific antibodies and assessed the amount of tyrosine phosphorylation of these proteins by antiphosphotyrosine immunoblotting. Treatment of WEHI-231 or Bal17 cells with anti-IgM induced an increase in PLC-gamma 2 tyrosine phosphorylation over background levels. There was no detectable tyrosine phosphorylation of PLC-gamma 1 in treated or untreated WEHI-231 cells, whereas anti-IgM-treated Bal17 cells did exhibit low but detectable levels of tyrosine phosphorylation of PLC-gamma 1. In normal resting mouse B cells, there was no detectable PLC-gamma 1, but PLC-gamma 2 was abundant. These observations suggest that PLC-gamma 2 is a significant substrate for the mIg-activated protein tyrosine kinase and may be responsible for mediating mIg stimulation of inositol phospholipid hydrolysis in murine B cells.  相似文献   

18.
Abstract. The kinetics of megakaryocyte formation from mouse bone marrow cells in semi-solid medium was studied directly in the culture dish by staining the cells for acetylcholinesterase after drying the cultures. A WEHI-3 cell-conditioned medium (WEHI-3 CM) was used as a general source of stimulus for megakaryocyte colony formation. The addition of peritoneal exudate supernatant as well as WEHI-3 CM increased the frequency of megakaryocyte colonies detected. Colonies containing acetylcholinesterase-positive cells were first detected at day 3. Maximum numbers of 25–40 megakaryocyte colonies per 105 nucleaet mouse bone marrow cells were observed from days 7 to 11. The mean number of cells within each colony increased progressively with time of culture, and a modal range of 11–20 cells was obtained by day 7. Between 3 and 200 cells per colony were generally detected. A continuous distribution of the number of megakaryocytes per colony suggests that the clonable precursor cells are not synchronized either with respect to maturation stage or with respect to their capability to undergo nuclear endoreduplication. The addition of peritoneal exudate supernatant to the cell cultures increased the DNA levels of megakaryocytes grown in the presence of WEHI-3 CM but did not affect the number of cells per colony. The DNA content of colony megakaryocytes was measured after staining the cells with Feulgen reagent. A modal DNA value of 8 N was observed between days 4 and 7 for megakaryocytes stimulated with WEHI-3 CM. In the presence of both WEHI-3 CM and peritoneal exudate supernatant, the DNA content of megakaryocytes increased with the time of cell culture. Modal DNA values increased from 8 N at days 4 and 5, to 16 N by day 6. In these optimally stimulated cultures, 44% of colony megakaryocytes were 32 N or greater, a proportion higher than in normal bone marrow, but similar to that seen in the marrow of acutely thrombocytopenic animals. It is concluded that megakaryocytopoiesis in cell cultures is not a strictly controlled process with respect to cell division and endomitosis and that when certain culture conditions are employed, megakaryocyte development in vitro might reflect that seen in a stressed animal condition.  相似文献   

19.
20.
We investigated the capacity of mouse bone marrow-derived macrophages (BMDM) to produce interleukin 1 (IL 1), interleukin-6 (IL 6), and tumor necrosis factor (TNF) upon lipopolysaccharide (LPS) stimulation. BMDM were allowed to differentiate either in the presence of conditioned medium (from WEHI-3 or L cells), or in the presence of recombinant cytokines (IL 3, macrophage-colony stimulating factor [M-CSF], or granulocyte/macrophage-colony stimulating factor [GM-CSF]). Cells were maintained in culture up to 3 weeks and tested at different times. Significant spontaneous cytokine production was never observed. BMDM rapidly acquired the capacity to elaborate cytokine upon LPS activation. LPS-triggered BMDM were able to produce IL 1, IL 6, and TNF, throughout the culture period, although 2- to 3-week-old cells lost their ability to release IL 1 while accumulation of intracellular IL 1 remained unchanged. The dissociation between synthesis and release of IL 1 was not correlated with a significant modification of the specific binding of LPS onto the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号