首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Accurate DNA synthesis in vivo depends on the ability of DNA polymerases to select dNTPs from a nucleotide pool dominated by NTPs. High fidelity replicative polymerases have evolved to efficiently exclude NTPs while copying long stretches of undamaged DNA. However, to bypass DNA damage, cells utilize specialized low fidelity polymerases to perform translesion DNA synthesis (TLS). Of interest is human DNA polymerase ι (pol ι), which has been implicated in TLS of oxidative and UV-induced lesions. Here, we evaluate the ability of pol ι to incorporate NTPs during DNA synthesis. pol ι incorporates and extends NTPs opposite damaged and undamaged template bases in a template-specific manner. The Y39A “steric gate” pol ι mutant is considerably more active in the presence of Mn2+ compared with Mg2+ and exhibits a marked increase in NTP incorporation and extension, and surprisingly, it also exhibits increased dNTP base selectivity. Our results indicate that a single residue in pol ι is able to discriminate between NTPs and dNTPs during DNA synthesis. Because wild-type pol ι incorporates NTPs in a template-specific manner, certain DNA sequences may be “at risk” for elevated mutagenesis during pol ι-dependent TLS. Molecular modeling indicates that the constricted active site of wild-type pol ι becomes more spacious in the Y39A variant. Therefore, the Y39A substitution not only permits incorporation of ribonucleotides but also causes the enzyme to favor faithful Watson-Crick base pairing over mutagenic configurations.  相似文献   

3.
4.
Escherichia coli DNA topoisomerase III belongs to the type IA family of DNA topoisomerases, which transiently cleave single-stranded DNA (ssDNA) via a 5' phosphotyrosine intermediate. We have solved crystal structures of wild-type E. coli topoisomerase III bound to an eight-base ssDNA molecule in three different pH environments. The structures reveal the enzyme in three distinct conformational states while bound to DNA. One conformation resembles the one observed previously with a DNA-bound, catalytically inactive mutant of topoisomerase III where DNA binding realigns catalytic residues to form a functional active site. Another conformation represents a novel intermediate in which DNA is bound along the ssDNA-binding groove but does not enter the active site, which remains in a catalytically inactive, closed state. A third conformation shows an intermediate state where the enzyme is still in a closed state, but the ssDNA is starting to invade the active site. For the first time, the active site region in the presence of both the catalytic tyrosine and ssDNA substrate is revealed for a type IA DNA topoisomerase, although there is no evidence of ssDNA cleavage. Comparative analysis of the various conformational states suggests a sequence of domain movements undertaken by the enzyme upon substrate binding.  相似文献   

5.
6.
Recent RNA polymerase (RNAP) structures led to a proposed three-step model of nucleoside triphosphate (NTP) binding, discrimination, and incorporation. NTPs are thought to enter through the secondary channel, bind to an E site, rotate into a pre-insertion (PS) site, and ultimately align in the catalytic (A) site. We characterized the kinetics of correct and incorrect incorporation for several Escherichia coli RNAPs with substitutions in the proposed NTP entry pore (secondary channel). Substitutions of the semi-conserved residue betaAsp(675), which is >10A away from these sites, significantly reduce fidelity; however, substitutions of the totally conserved residues betaArg(678) and betaAsp(814) do not significantly alter the correct or incorrect incorporation kinetics, even though the corresponding residues in RNAPII crystal structures appear to be interacting with the NTP phosphate groups and coordinating the second magnesium ion in the active site, respectively. Structural analysis suggests that the lower fidelity of the betaAsp(675) mutants most likely results from reduction of the negative potential of a small pore between the E and PS sites and elimination of several structural interactions around the pore. We suggest a mechanism of nucleotide discrimination that is governed both by rotation of the NTP through this pore and subsequent rearrangement or closure of RNAP to align the NTP in the A site.  相似文献   

7.
8.
9.
The essential enzyme dUTPase is responsible for preventive DNA repair via exclusion of uracil. Lack or inhibition of the enzyme induces thymine-less cell death in cells performing active DNA synthesis, serving therefore as an important chemotherapeutic target. In the present work, employing differential circular dichroism spectroscopy, we show that D. mel. dUTPase, a recently described eukaryotic model, has a similar affinity of binding towards alpha,beta-imino-dUTP as compared to the prokaryotic E. coli enzyme. However, in contrast to the prokaryotic dUTPase, the nucleotide exerts significant protection against tryptic digestion at a specific tryptic site 20 A far from the active site in the fly enzyme. This result indicates that binding of the nucleotide in the active site induces an allosteric conformational change within the central threefold channel of the homotrimer exclusively in the eukaryotic enzyme. Nucleotide binding induced allosterism in the D. mel. dUTPase, but not in the E. coli enzyme, might be associated with the altered hydropathy of subunit interfaces in these two proteins.  相似文献   

10.
Wigle TJ  Lee AM  Singleton SF 《Biochemistry》2006,45(14):4502-4513
The roles of the RecA protein in the survival of bacteria and the evolution of resistance to antibiotics make it an attractive target for inhibition by small molecules. The activity of RecA is dependent on the formation of a nucleoprotein filament on single-stranded DNA that hydrolyzes ATP. We probed the nucleotide binding site of the active RecA protein using modified nucleotide triphosphates to discern key structural elements of the nucleotide and of the binding site that result in the activation of RecA for NTP hydrolysis. Our results show that the RecA-catalyzed hydrolysis of a given nucleotide triphosphate or analogue thereof is exquisitely sensitive to certain structural elements of both the base and ribose moieties. Furthermore, our ligand-based approach to probing the RecA ATP binding site indicated that the binding of nucleotides by RecA was found to be conformationally selective. Using a binding screen that can be readily adapted to high-throughput techniques, we were able to segregate nucleotides that interact with RecA into two classes: (1) NTPs that preferentially bind the active nucleoprotein filament conformation and either serve as substrates for or competitively inhibit hydrolysis and (2) nonsubstrate NTPs that preferentially bind the inactive RecA conformation and facilitate dissociation of the RecA-DNA species. These results are discussed in the context of a recent structural model for the active RecA nucleoprotein filament and provide us with important information for the design of potent, conformationally selective modulators of RecA activities.  相似文献   

11.
Rotavirus NSP2 is an abundant non-structural RNA-binding protein essential for forming the viral factories that support replication of the double-stranded RNA genome. NSP2 exists as stable doughnut-shaped octamers within the infected cell, representing the tail-to-tail interaction of two tetramers. Extending diagonally across the surface of each octamer are four highly basic grooves that function as binding sites for single-stranded RNA. Between the N and C-terminal domains of each monomer is a deep electropositive cleft containing a catalytic site that hydrolyzes the gamma-beta phosphoanhydride bond of any NTP. The catalytic site has similarity to those of the histidine triad (HIT) family of nucleotide-binding proteins. Due to the close proximity of the grooves and clefts, we investigated the possibility that the RNA-binding activity of the groove promoted the insertion of the 5'-triphosphate moiety of the RNA into the cleft, and the subsequent hydrolysis of its gamma-beta phosphoanhydride bond. Our results show that NSP2 hydrolyzes the gammaP from RNAs and NTPs through Mg(2+)-dependent activities that proceed with similar reaction velocities, that require the catalytic His225 residue, and that produce a phosphorylated intermediate. Competition assays indicate that although both substrates enter the active site, RNA is the preferred substrate due to its higher affinity for the octamer. The RNA triphosphatase (RTPase) activity of NSP2 may account for the absence of the 5'-terminal gammaP on the (-) strands of the double-stranded RNA genome segments. This is the first report of a HIT-like protein with a multifunctional catalytic site, capable of accommodating both NTPs and RNAs during gammaP hydrolysis.  相似文献   

12.
13.
The essential enzyme dUTPase is responsible for preventive DNA repair via exclusion of uracil. Lack or inhibition of the enzyme induces thymine‐less cell death in cells performing active DNA synthesis, serving therefore as an important chemotherapeutic target. In the present work, employing differential circular dichroism spectroscopy, we show that D. mel. dUTPase, a recently described eukaryotic model, has a similar affinity of binding towards α,β‐imino‐dUTP as compared to the prokaryotic E. coli enzyme. However, in contrast to the prokaryotic dUTPase, the nucleotide exerts significant protection against tryptic digestion at a specific tryptic site 20 Å far from the active site in the fly enzyme. This result indicates that binding of the nucleotide in the active site induces an allosteric conformational change within the central threefold channel of the homotrimer exclusively in the eukaryotic enzyme. Nucleotide binding induced allosterism in the D. mel. dUTPase, but not in the E. coli enzyme, might be associated with the altered hydropathy of subunit interfaces in these two proteins.  相似文献   

14.
Fang H  Jing P  Haque F  Guo P 《Biophysical journal》2012,102(1):127-135
Linear double-stranded DNA (dsDNA) viruses package their genomes into preformed protein shells via nanomotors using ATP as an energy source. The central hub of the bacteriophage φ29 DNA-packaging motor contains a 3.6-nm channel for dsDNA to enter during packaging and to exit during infection. The negatively charged interior channel wall is decorated with a total of 48 positively charged lysine residues displayed as four 12-lysine rings from the 12 gp10 subunits that enclose the channel. The standard notion derived from many models is that these uniquely arranged, positively charged rings play active roles in DNA translocation through the channel. In this study, we tested this prevailing view by examining the effect of mutating these basic lysines to alanines, and assessing the impact of altering the pH environment. Unexpectedly, mutating these basic lysine residues or changing the pH to 4 or 10, which could alter the charge of lysines, did not measurably impair DNA translocation or affect the one-way traffic property of the channel. The results support our recent findings regarding the dsDNA packaging mechanism known as the "push through a one-way valve".  相似文献   

15.
Human DNA polymerase mu (Polμ), a family X member involved in DNA repair, has both template-directed and terminal transferase (template-independent) activities. In addition to their ability to incorporate untemplated nucleotides, another similarity between Polµ and terminal deoxynucleotidyl transferase (TdT) is their promiscuity in using ribonucleotides (NTPs), whose physiological significance is presently unknown. As shown here, Polµ can use NTPs instead of deoxynucleotides (dNTPs) during non-homologous end joining (NHEJ) of non-complementary ends, a Polµ-specific task. Moreover, a physiological concentration of Mn2+ ions did benefit Polµ-mediated NHEJ by improving the efficiency and accuracy of nucleotide insertion. Analysis of different mutations in the ‘steric gate’ of the active site indicated that Polµ is taking advantage of an open active site, valid for selecting alternative activating metal ions and nucleotides as substrates. This versatility would allow ad hoc selection of the most appropriate nucleotide/metal ion combination for individual NHEJ events to gain efficiency without a cost in terms of fidelity, thus widening the spectrum of available solutions to position a discontinuous template strand in proper register for connection.  相似文献   

16.
Sin resolvase is a site-specific serine recombinase that is normally controlled by a complex regulatory mechanism. A single mutation, Q115R, allows the enzyme to bypass the entire regulatory apparatus, such that no accessory proteins or DNA sites are required. Here, we present a 1.86 ? crystal structure of the Sin Q115R catalytic domain, in a tetrameric arrangement stabilized by an interaction between Arg115 residues on neighboring subunits. The subunits have undergone significant conformational changes from the inactive dimeric state previously reported. The structure provides a new high-resolution view of a serine recombinase active site that is apparently fully assembled, suggesting roles for the conserved active site residues. The structure also suggests how the dimer-tetramer transition is coupled to assembly of the active site. The tetramer is captured in a different rotational substate than that seen in previous hyperactive serine recombinase structures, and unbroken crossover site DNA can be readily modeled into its active sites.  相似文献   

17.
18.
19.
Restriction endonuclease BglII completely encircles its target DNA, making contacts to both the major and minor grooves. To allow the DNA to enter and leave the binding cleft, the enzyme dimer has to rearrange. To understand how this occurs, we have solved the structure of the free enzyme at 2.3 A resolution, as a complement to our earlier work on the BglII-DNA complex. Unexpectedly, the enzyme opens by a dramatic 'scissor-like' motion, accompanied by a complete rearrangement of the alpha-helices at the dimer interface. Moreover, within each monomer, a set of residues--a 'lever'--lowers or raises to alternately sequester or expose the active site residues. Such an extreme difference in free versus complexed structures has not been reported for other restriction endonucleases. This elegant mechanism for capturing DNA may extend to other enzymes that encircle DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号