首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Zhao ZY  Weber DF 《Genetics》1988,119(4):975-980
The r-X1 deficiency in maize induces nondisjunction at the second mitotic division during embryo sac formation. However, it was not known if this deficiency also induces nondisjunction during the microspore divisions. Microsporogenesis in plants lacking or containing this deficiency was compared using two approaches. First, chromosome numbers were determined in generative nuclei. Many (8.3%) of the generative nuclei in r-X1-containing plants were aneuploid; however, those from control plants were all haploid. Thus, this deficiency induces nondisjunction during the first microspore division. Second, nucleoli were analyzed in microspores. The only nucleolar organizing region in maize is on chromosome 6. If chromosome 6 underwent nondisjunction during the first microspore division, one nucleus in binucleate microspores would contain no nucleolus and the other would contain two nucleoli (or one nucleolus if the nucleoli fused). Only one (0.03%) microspore of this type was observed in control plants while 1.12% were found in r-X1-containing plants. Thus, the r-X1 deficiency induces nondisjunction of chromosome 6 during the first microspore division. However, both of the sperm nuclei in trinucleate microspores contained one nucleolus in r-X1-containing and control plants; thus, this deficiency does not induce nondisjunction of chromosome 6 (and presumably other chromosomes) during the second microspore division.  相似文献   

2.
Culture of isolated microspores and of anthers on media containing IAA directed free microspore development to an embryogenic pathway in C. olitorius. The first division of microspores on transfer to culture media was symmetrical in contrast to the asymmetrical division seen in normal development in vivo. Initially, 10-30% microspores divided symmetrically, but only 0.2-1% of the dividing microspores continued dividing and produced multicellular microcalli. About 30% of these microcalli produced callus but only on medium with 2.0 mg/L zeatin and 0.1 mg/L IAA. Incubation in the dark at temperatures of 35 degrees C for 1 day and then 25 degrees C was found effective for induction of first embryonic division in Corchorus. The frequency of microspore callus formation was higher on medium containing either 3% or 5% sucrose. Addition of colchicine and addition of activated charcoal to the above medium did not enhance microspore division in Corchorus olitorius. On transfer to different media most calli produced roots but regeneration of shoots and embryos was not induced.  相似文献   

3.
The effect of media composition on microspore culture was investigated in one tetraploid and two diploid potatoes. The viability of microspores isolated from 4.5 to 5 mm buds was in the range of 33 to 52%. In media for anther culture, microspores showed no further development and lost viability within 2 days. In M1 medium containing mineral components, sucrose, uridine, cytidine, myo-inositol, glutamine and lactalbumin hydrolysate, 18 to 37% of microspores underwent mitosis within 14 days. Up to 95% of the divisions were symmetric and produced equal nuclei. Some symmetrically divided microspores eventually produced structures with 3 to 10 nuclei. The proportion of the total microspore population producing multinuclear structures reached 9% in diploid clones responsive to anther culture and 1 to 2% in recalcitrant cv. Borka. Symmetric mitoses in M1 medium were induced in the presence of glutamine and lactalbumin hydrolysate. Nucleosides and myo-inositol had no effect on microspore division. In the absence of all organic components except sucrose, most mitoses were asymmetric, formation of multinuclear structures was reduced and most pollen accumulated starch indicative of gametophytic fate. In complete M1 medium, starch accumulation was suppressed. Suppression also occurred in asymmetrically divided microspores, indicating a direct inhibition of pollen development independent of the mode of microspore division. This inhibitory effect of M1 medium might present a stress which triggers the induction of symmetric microspore division and subsequent formation of multinuclear structures. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
研究了秋水仙碱不同浓度和处理时间对甘蓝型油菜23个基因型离体小孢子胚胎发生的影响.3个基因型的小孢子被10、50和100mg/L秋水仙碱处理24h或48h,胚产量是2.55~14.75胚/蕾,10~50mg/L处理72h则是0.94~2.43胚/蕾.这表明处理72h对小孢子胚发生有抑制作用.用200、400、500和800mg/L处理2个基因型小孢子16~48h,胚产量为0.6~1.33胚/蕾,未处理对照是6.25和9.36胚/蕾.可见200~800mg/L浓度对胚再生有不同程度的阻碍效应.结果还证明,小孢子对秋水仙碱的反应与其基因型有关.当用10、20、50和100mg/L处理48h时,22B5-6和903-3小孢子的胚产量为37.09~69.47胚/蕾,而F1-29、W592和SF10-12是0.28~1.45胚/蕾,相互之间差异很大.秋水仙碱处理小孢子的目的是使其再生植株的染色体高频率加倍,因此应根据胚产量和染色体加倍率来确定秋水仙碱浓度和处理时间.本试验中,采用10~50mg/L处理48h或者用100mg/L处理24h,约80%基因型的小孢子胚产量在5胚/蕾以上,约70%基因型的再生植株加倍率达60%以上,可有效地用于油菜遗传和育种研究等领域.  相似文献   

5.
Summary The influence of donor plant growth environment, microspore development stage, culture media and incubation conditions on microspore embryogenesis was studied in three Indian B. juncea varieties. The donor plants were grown under varying environments: field conditions, controlled conditions, or a combination of the two. The correlation analysis between the bud size and microspore development stage revealed that the bud size is an accurate marker for donor plants grown under controlled conditions, however, the same does not hold true for the field-grown plants. The buds containing late uninucleate microspores collected from plants grown under normal field conditions up to bolting stage and then transferred to controlled environment were observed to be most responsive with genotypic variability ranging from 10 to 35 embryos per Petri dish, irrespective of the other factors. NLN medium containing 13% sucrose was found to be most suitable for induction of embryogenesis The fortification of this medium with activated charcoal, polyvinylpyrrolidone, colchicine, or growth regulators (6-benzylaminopurine and 1-naphthaleneacetic acid) was observed to be antagonistic for microspore embryogenesis, while silver nitrate (10 μM) had a significant synergistic effect. A post-culture high-temperature incubation of microspores at 32.5±1°C for 10–15 d was found most suitable for high-frequency production of microspore embryos. The highest frequency of microspore embryogenesis (78 embryos per Petri dish) was observed from the late uninucleate microspores (contained in bud sizes 3.1–3.5 nm irrespective of genotype) cultured on NLN medium containing 13% sucrose and silver nitrate (10 μM), and incubated at 32.5°C for 10–15 d.  相似文献   

6.
The present study involves in vitro androgenesis of Zea mays L. using anther culture. We tested combinations of single factors and their influence on microspore induction. Embryogenic induction of microspores within anthers in in vitro conditions was the best when combination of cold treatment, TIBA (0.1 mg l–1) in media and colchicine (0.02% during first 3 days of culture) was applied, but colchicine alone can be factor, which can stimulate or initiate embryogenesis in anther culture of maize.  相似文献   

7.
The production of double haploids through androgenesis is used by breeders to produce homozygous lines in a single generation. Androgenesis can be achieved by isolated microspore culture, which, however, allows the production of embryogenesis with a very low efficiency. In order to improve the overall embryogenesis in pepper, we study the differences of microspore embryogenesis in different genotypes of pepper, and also document the effect of growth regulators in pretreatment media, and activated charcoal (AC) on embryogenesis induction. Fifty different pepper genotypes were evaluated, and the swollen rate of microspores from different genotypes varied from 3.11% to 29.56% with the mean value of 13.13%. Microspores from genotype ‘36’ had the highest swollen rate, and the lowest swollen rate of microspores was observed in genotype ‘26’. It was concluded from the statistical results of L9 (33) orthogonal test that changes in the level of BA influenced the swollen rate of microspores more significantly, and the combination of 0 mg∙l 1 6-benzyladenine (BA), 0.2 mg∙l 1 α-naphthaleneacetic acid (NAA) and 0.5 mg∙l 1 kinetinin (Kin) was best. AC at a concentration of 0.05% could act as a promoter of embryogenesis in the microspore culture of different pepper genotypes, while the more significant effect was observed with the low responsive genotypes.  相似文献   

8.
Summary Development of asparagus microspores in cold-treated buds of varying sizes and shed microspores from these buds in in vitro culture were observed cytologically for the G459 genotype. Before cold pretreatment, more than 75% of the microspores in flower buds of the 1.4–1.6, 1.7–1.9, 2.0–2.2, 2.3–2.5, and 2.6–2.8 mm size classes were at the early-, mid-, late-uninucleate, early-, and late-binucleate stages, respectively. After 7 d in cold treatment, percentages of microspores at different stages changed in all flower buds. Most notable was the appearance of binucleate microspores resulting from symmetric rather than asymmetric division. For flower buds of 1.7–1.9, 2.0–2.2, and 2.3–2.5 mm size classes, 4.9%, 27.2%, and 11.4% of the microspores had divided symmetrically, respectively. When microspores from buds of each size category were cultured in androgenesis induction medium, only microspores completing symmetric pollen mitosis I during cold treatment were observed to divide further, and calluses were only obtained from microspores of flower bud size classes where symmetric divisions were observed after several days of cold treatment. Significant correlations existed among microspore callus yield, the percentage of late-uninucleate microspores in vivo before cold treatment, and the frequency of symmetric pollen mitosis I after 7 d of cold treatment. Consequently, asparagus microspore androgenesis may occur through one developmental pathway, where a symmetric first mitotic division is a prerequisite for continued development.  相似文献   

9.
 Pure fractions of maize (Zea mays L.) microspores at various densities were exposed to defined media containing different concentrations of maltose and sucrose. In general, lower carbohydrate concentrations (60, 90 g/l) yielded higher frequencies of embryo-like structures than a high concentration (120 g/l). Optimum cell density seemed to depend on the genotype, but densities above 80,000 microspores/ml led to reduced embryogenesis in all genotypes tested. Direct comparison of maltose and sucrose as carbohydrate source in the induction medium clearly demonstrated the superiority of maltose with regard to the regeneration frequency. For two out of three genotypes tested, maltose also enhanced the formation of embryo-like structures. The time of embryo transfer to callus induction media had a significant effect on regeneration frequency. Received: 26 September 1997 / Revision received: 5 November 1998 / Accepted 24 March 1999  相似文献   

10.
Summary In tis androgenic response, maize is considered to be a recalcitrant plant. We used mechanically isolated microspores of maize genotype A18 to establish a responsive microspore culture of maize. Morphological events occurring during the first days of maize androgenesis in a microspore culture were observed and described, and some morphological markers for distinguishing between embryogenic microspores and nonembryogenic microspores were identified. It was found that the enlargement of microspores during the first days in culture and the ‘star-like’ organization of the cytoplasm inside the microspore are connected with reprogramming of the developmental pathway in maize microspores. Some differences were also found in the surface wall architecture of embryogenic microspores. Fertile plants were successfully recovered from microspore-originated structures.  相似文献   

11.
Microspores of Brassica napus L. cv. Topas, undergo embryogenesis when cultured at 32.5 °C for the first 18–24 h and then at 25 °C. The first division in heat-treated microspores is a symmetric division in contrast to the asymmetric division found after the first pollen mitosis in-planta or in microspores cultured continuously at 25 °C. This asymmetric division is unique in higher plants as it results in daughter cells separated by a non-consolidated wall. The cytoskeleton has an important role in such morphological changes. We examined microtubule (MT) organization during the first 24 h of heat induction in the embryogenic B. napus cv. Topas and the non-embryogenic B. napus breeding line 0025. Preprophase bands (PPBs) of MTs appeared in cv. Topas microspores in late uninucleate microspores and in prophase figures after 4–8 h of heat treatment. However, more than 60% of the PPBs were not continuous bands. In contrast, PPBs were never observed in pollen mitosis; MT strands radiated from the surface of the nuclear envelope throughout microspore maturation to the end of prophase of pollen mitosis I, during in-planta development and in microspores cultured at 25 °C. Following 24 h of heat treatment, over 95% of the microspores appeared to have divided symmetrically as indicated by the similar size of the daughter nuclei, but only 7–16% of the microspores eventually formed embryos. Discontinuous walls were observed in more than 50% of the divisions and it is probable that the discontinuous PPBs gave rise to such wall abnormalities which may then obstruct embryo development. Preprophase bands were not formed in heat-treated microspores of the non-embryogenic line 0025 and the ensuing divisions showed discontinuous walls. It is concluded that the appearance of PPBs in heat-induced microspores marks sporophytic development and that continuous PPBs are required for cell wall consolidation and embryogenesis. It follows that induced structures with two equally condensed nuclei, do not necessarily denote symmetric divisions. Received: 22 October 1998 / Accepted: 28 November 1998  相似文献   

12.
In an attempt to discover the biological basis of microspore derived embryogenesis, the effect of the antimicrotubule agent colchicine on anther and free microspore embryogenesis was investigated. The microtubule inhibitor colchicine promoted embryogenesis from cultured anthers, both with regard to the number of anthers responding and the number of embryos being produced per anther. A similar promotional response was also observed with cultured microspores. Although the parameters for cultured anthers and free microspores differed, administration of the drug for a short period immediately prior to pollen mitosis I seems to exert the maximum promotional effect. Of the five cultivars of Brassica napus studied, all responded to colchicine treatment. However, the drug did release more embryogenic potential in poor-responding varieties (i.e. Lirawell and Optima) than in the highest responding variety (Topas). Colchicine also resulted in increased embryogenic response in microspores cultured at lower temperatures.These results are considered in terms of models proposed to explain the switch in microspore development from a gametophytic to a sporophytic pathway. The use ofcolchicine as agent to promote embryogenesis in previously recalcitrant species other than Brassica is also discussed.  相似文献   

13.
The effect of colchicine on embryogenesis induction and chromosomedoubling during microspore culture was evaluated in two F1 hybridsofwinter oilseed rape (Brassica napus L.). Colchicinetreatment (50 and 500 mg/L) of isolated microspores during thefirst 15 h in culture stimulated embryogenesis and produced large amounts ofhealthy-looking embryos. These normal embryos germinated well at 24°C after being transferred to solid regeneration medium and aninitial period of low temperature (2 °C) for 10 days, andcoulddirectly and rapidly regenerate vigorous plants. A high doubling efficiency of84–88% was obtained from 500 mg/L colchicine treatment for15h with low frequency of polyploid and chimeric plants. Acolchicinetreatment duration of 6 h was less effective on embryogenesis anddoubling efficiency. The present experiment also showed that changing of induction medium 15h after microspore isolation produced higher spontaneous doublingefficiency, as compared with medium change 6 h after isolation.  相似文献   

14.
郭向荣  景建康  胡含 《遗传学报》1997,24(6):507-512
以微搅拌法建立了小孢子直接游离的预处理和培养程序。在大田生长的4个对培养反应不同的大麦基因型上,以新鲜幼穗游离小孢子进行直接培养,均成功地诱导了胚状体并获得再生绿色植株。小孢子的发育进程说明,直接游离的小泡子在预处理过程中的发育要慢于在花药中预处理的小孢子,而且其培养效率也较低。直接游离小孢子的培养密度以0.8~1.0×105/ml较理想,至少应不低于6×104/ml.8%-10%的糖浓度可明显提高小孢子分裂频率和胚状体诱导频率。实验结果也表明两种培养基FHG和MN6无明显差异,均适宜于直接游离的小孢子培养,并对游离小孢子直接培养在理论和应用上的意义进行了讨论  相似文献   

15.
Pret'ová A  Obert B  Bartosová Z 《Protoplasma》2006,228(1-3):107-114
Summary. The article is reviewing some significant features and issues in the process of haploid formation in two important monocotyledonous crop plants – maize and barley – and in two dicotyledonous plants – flax and potato. Exotic maize lines with higher androgenic response turned up as a good source for this heritable trait and this valuable trait can be incorporated into elite maize lines via crossing. Lots of attempts were devoted to identifying some cytological and/or morphological markers for androgenic response in maize microspore cultures. The “starlike” organization of the cytoplasm inside the induced maize microspores together with the enlarged size of induced microspores can be considered as morphological markers for androgenic response. In barley, microspores with rich cytoplasm that was of granular appearance with the nucleus located near the cell wall and with no visible vacuole had the largest survival rate and many of these cells continued in development and produced embryos. In flax, a dramatic increase of induction rate in anther cultures (up to 25%) was achieved when flax anthers were pretreated for 3 days at 4 °C and afterwards kept for 1 day at 35 °C. Also gynogenesis in flax has been reported already and complete plants were obtained. In potato microspore cultures, formation of two dissimilar cells indicated a strong polarization in the system and as a result of this polarization a prominent suspensor developed that persisted until the torpedo stage of the androgenic embryo. This was the first time the formation of a well developed suspensor was described in connection with androgenesis. Correspondence and reprints: Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, P.O. Box 39A, 950 07 Nitra, Slovak Republic.  相似文献   

16.
The objective of this study was to improve induction of embryogenesis in white cabbage (Brassica oleracea var. capitata) microspore cultures. The effect of NLN-13 liquid medium pH on isolated microspore embryogenesis was investigated in five white cabbage genotypes. Relatively high pH (6.2 or 6.4) was more effective on microspore embryogenesis in most of the white cabbage genotypes than the pH of 5.8, especially for inducing microspore-derived embryos in recalcitrant genotype ??Zhonggan No. 8??. Based on this, 2??(N-Morpholino) ethanesulfonic acid (MES) and the arabinogalactan-protein from gum arabic were tested on four out of five genotypes to see if they could increase embryo yield in microspore cultures. Adding MES or gum arabic alone was effective for these four genotypes, but the frequency of embryos derived from microspores was still low. However, the combination of 10?mg?l?1 gum arabic and 3?mM MES in NLN-13 at pH 6.4 significantly enhanced microspore embryogenesis efficiency (with embryo production of 4.57?C222.97 embryos per bud), especially with recalcitrant genotype ??Zhonggan No. 8?? for which it was increased by about 35-fold.  相似文献   

17.
Anther culture is one of the most widely used methods to induce gametic embryogenesis. The aim of this investigation was to induce microspore embryogenesis in almond (Prunus dulcis Mill.), through this technique. Anthers were cultured at the vacuolated developmental stage, and seven cultivars, two culture media and two temperature treatments were assessed. Although evidence of the microspore induction was observed in all the genotypes and treatments tested (symmetrical nucleus division and multinucleated structures), calli were produced merely by anthers cultured in the medium P and the regeneration of embryos was detected only in anthers of the cultivars Filippo Ceo, Lauranne and Genco, placed on medium P and subjected to the Control treatment (direct culture at 25?±?1?°C, without the hot thermal shock at 35?±?1?°C for 7 days). Characterization by SSR marker analysis of the embryo genotypes revealed that the regenerants had a single allele for each locus whereas the parent cultivar was heterozygous, indicating their development from haploid microspores. This study reports the evidence of gametic embryogenesis and, particularly, of microspore embryogenesis through in vitro anther culture, in almond, and, for the first time to our knowledge, the production of homozygous embryos.  相似文献   

18.
Studies were undertaken with one olive (Olea europaea L.) cultivar to identify buds with microspores competent to embryogenesis in vitro. Isolated microspore cultures were performed for the induction of gametic embryogenesis. Different pollen development stages and stress conditions (heat or cold shock) were evaluated. The correlation of inflorescence, anther morphology and the suitable stage of microspore development were analysed. The morphology of responsive buds was identified which corresponded with microspores from the late uni-nucleate to early bi-nucleate pollen stages. Symmetrical divisions of microspores as well as resulting multinucleate structures and pro-embryos were observed. In this paper, a new method of isolated microspore culture that leads to cell division and pro-embryos in olive, is reported.  相似文献   

19.
The influence of high temperature (33℃) on embryogenesis in isolated microspore culture of Chinese cabbage (Brassica campestris spp. pekinensis ) was investigated by microscpopy of FDA and DAPI. The microspores cultured at constant temperature of 25 ℃ lost their viability quickly and only few viable microspores were found after 7 days of culture. The morphology of the cultured microspores became as turgescent as the "rugby" which was similar to the mature pollen of the Chinese cabbage. The first nuclear division of the microspores was asymmetric. The microspores lost their capacity of embryogenesis under such condition. In contrast, when the microspores were cultured at 33℃ for 24 h before they were transfered to the culture condition of 25 ℃, their developmental pattern was changed. Some of the microspores could remain viable even for 7 days in culture, they became rounded off. The symmetric nuclear division pattern was induced. The frequency of such division was about 40%. Of the several new cell division types observed, the symmetric type was more frequent (55%) than others. The microspores treated under 33℃ were able to form embryoids via embryogenesis. The critical period of high temperature treatment on microspore culture of Chinese cabbage was about the initial 12 h, if the cell division index of microspore was concerned, but the period was the initial 24 h if the frequency of embryogenesis was considered.  相似文献   

20.
A protocol for the induction of androgenesis and plant regeneration from C. arabica cv. Caturra isolated microspores in vitro using colchicine pretreatment has been developed. Microspores were mechanically isolated and then carefully purified. Before colchicine pretreatment, microspores were cultured in a semi-solid medium for further develop and regeneration. Different times of colchicine exposure as well as different concentrations were tested. The best androgenic response was found when microspores were precultured in 100 mg l–1 colchicine for 48 h. The microspore developmental stages responsive to colchicine were late-uninucleated and early binucleated pollen. Flow cytometry and morphological analyses revealed that 95% of regenerated plants were dihaploids (2n=2x=22). However, some doubled dihaploid plants (2n=4x=44) were also obtained, suggesting that not only androgenic induction but also chromosome duplication could be expected as result of colchicine exposure of coffee microspores. This report represents a new approach in the coffee pollen culture, as well as a major step forward to the utilization of haploid technology in coffee breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号