首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possibility of cryopreserving the eggs of Angiostrongylus cantonensis collected from the uterus of female worms was investigated. Eggs were cultured in NCTC 109 medium containing 50% rat serum, and various growth stages, from one-cell eggs to embryonated eggs, were used in this study. As a cryoprotective agent, dimethylsulphoxide (Me2SO) was added to the medium at a final concentration of 1 M. Eggs suspended in 0.2 ml of the medium at 37 degrees C were cooled to 0 degrees C at a rate of 1 degree C min-1, then an equal volume of 2M-Me2SO solution was added. After equilibration for 15 min, the freezing procedures were started. In the freezing procedures, the effectiveness of (i) a seeding process, (ii) different cooling and warming rates and (iii) the relationship between the growth stages of the eggs and their tolerance to freezing at -20 degrees C were investigated. It was found the highest level of survival could be obtained with 32-cell eggs cooled at a rate of 0.3 degrees C min-1 or more slowly with seeding at -4 degrees C and warming at a rate of 5 degrees C min-1. Survival was influenced more by cooling rate than by warming rate. Using these optimum conditions, the survival of eggs was then investigated following cooling to various temperatures. While more than 50% of eggs were found to survive cooling to -30 degrees C, extremely low survival was noted from lower temperatures.  相似文献   

2.
Cryopreservation protocols for umbilical cord blood have been based on methods established for bone marrow (BM) and peripheral blood stem cells (PBSC). The a priori assumption that these methods are optimal for progenitor cells from UCB has not been investigated systematically. Optimal cryopreservation protocols utilising penetrating cryoprotectants require that a number of major factors are controlled: osmotic damage during the addition and removal of the cryoprotectant; chemical toxicity of the cryoprotectant to the target cell and the interrelationship between cryoprotectant concentration and cooling rate. We have established addition and elution protocols that prevent osmotic damage and have used these to investigate the effect of multimolar concentrations of Me(2)SO on membrane integrity and functional recovery. We have investigated the effect of freezing and thawing over a range of cooling rates and cryoprotectant concentrations. CD34(+) cells tolerate up to 60 min exposure to 25% w/w (3.2M) Me(2)SO at +2 degrees C with no significant loss in clonogenic capacity. Exposure at +20 degrees C for a similar period of time induced significant damage. CD34(+) cells showed an optimal cooling range between 1 degrees C and 2.5 degrees C/min. At or above 1 degrees C/min, increasing the Me(2)SO concentration above 10% w/w provided little extra protection. At the lowest cooling rate tested (0.1 degrees C/min), increasing the Me(2)SO concentration had a statistically significant beneficial effect on functional recovery of progenitor cells. Our findings support the conclusion that optimal recovery of CD34(+) cells requires serial addition of Me(2)SO, slow cooling at rates between 1 degrees C and 2.5 degrees C/min and serial elution of the cryoprotectant after thawing. A concentration of 10% w/w Me(2)SO is optimal. At this concentration, equilibration temperature is unlikely to be of practical importance with regard to chemical toxicity.  相似文献   

3.
T Kojima  T Soma  N Oguri 《Cryobiology》1987,24(3):247-255
The aim of the present study was to examine the effects of various conditions of addition and dilution of dimethyl sulfoxide (Me2SO) and 37 degrees C equilibration, and also the effects of freezing in the solution which was prepared in advance and stored in plastic straws at -20 degrees C on the viability of rabbit morulae thawed rapidly. The embryos were cooled from room temperature to -30 degrees C at 1 degree C/min in the presence of 1.5 M Me2SO using a programmable liquid nitrogen vapor freezing machine with an automatic seeding device, then cooled rapidly, and stored in liquid nitrogen. The frozen straws were thawed rapidly (greater than 1000 degrees C/min). When Me2SO was added in a single step, equilibrated with embryos at 37 degrees C for 15 min and diluted out in a single step, a very high survival was obtained: transferable/recovered, 90%: developed/recovered, 96%. When embryos were pipetted into 1.5 M Me2SO that was prepared in advance, stocked in straws at -20 degrees C, and cooled, the proportions of transferable and developed embryos were equivalent to those of embryos frozen in the solution that was prepared immediately before use.  相似文献   

4.
PURPOSE: Cryopreserved human blood vessels may become important tools in bypass surgery. Optimal cryopreservation of an arterial graft should, therefore, preserve both histological and physiological characteristics of smooth muscle and endothelium comparable to the unfrozen artery. METHODS: Rings from human internal mammary arteries (IMA) were investigated in vitro either unfrozen or after immersion into a cryomedium (RPMI 1640 containing 1.8M Me2SO and 0.1M sucrose) and cryostorage with and without surrounding medium. RESULTS: In unfrozen IMA, neither contractile responses to noradrenaline (NA) nor endothelium-dependent relaxant responses to acetylcholine (ACH) was modified after exposure of the IMA to cryomedium or during activation of protein kinase C by phorbol-12,13-dibutyrate (PDBu). Exposure to cryomedium with gradually increasing Me2SO content before starting the cooling process did not improve the post-thaw functional activity of the artery. Optimal post-thaw recovery of contractile responses to NA and PGF(2alpha) was observed after freezing at a speed of -1.2 and -3 degrees C/min in arteries stored with and without surrounding cryomedium. Compared to unfrozen controls, the ACH-induced endothelium-dependent relaxation during active tone induced by 3 microM PGF(2alpha) reached 16 and 56% after freezing with and without surrounding medium. All functional data were reflected by electron microscopy images showing considerably better preservation of the endothelial layer after freezing without medium. CONCLUSION: Freezing of human arteries at a mean cooling rate of -3 degrees C/min and storage without surrounding medium offers the prospect of optimal preservation of both smooth muscle and endothelial function in cryopreserved human IMA.  相似文献   

5.
Drug metabolism and viability studies in cryopreserved rat hepatocytes   总被引:1,自引:0,他引:1  
Rat hepatocytes were cryopreserved optimally by freezing them at 1 degrees C/min to -80 degrees C in cryoprotectant medium containing either 20% (v/v) dimethylsulfoxide (Me2SO) and 25% (v/v) fetal calf serum in Leibowitz L15 medium (Me2SO cryoprotectant) or 25% (v/v) vitrification solution (containing Me2SO, acetamide, propylene glycol and polyethylene glycol) in Leibowitz L15 medium (VS25). The VS25 solution was superior for maintaining viability during short-term storage (24-48 hr) but was slightly toxic during longer storage periods (7 days). Although thawed cells were 40-50% viable on ice after cryopreservation, their viability fell rapidly during incubation in suspension at 37 degrees C. This decline in viability occurred more rapidly after freezing in Me2SO cryoprotectant than in VS25 and was associated with extensive intracellular damage and cell swelling. The loss in viability at 37 degrees C does not appear to be due to ice-crystal damage as it occurred in cells stored at -10 degrees C (above the freezing point of the cryoprotectants) and it may be due to temperature/osmotic shock. Both cryoprotectant media were equally efficient at preserving enzyme activities in the hepatocytes over 7 days at -80 degrees C. Cytochrome P450 and reduced glutathione content and the activities of the microsomal enzymes responsible for aminopyrine N-demethylation and epoxide hydrolysis were well maintained over 7 days storage. In contrast, the cytosolic enzymes glutathione-S-transferase and glutathione reductase were markedly labile during cryopreservation. Cytosolic enzymes may be more susceptible to ice-crystal damage, whereas the microsomal membrane may protect the enzymes which are embedded in it.  相似文献   

6.
During freezing, intracellular ice formation (IIF) has been correlated with loss in viability for a wide variety of biological systems. Hence, determination of IIF characteristics is essential in the development of an efficient methodology for cryopreservation. In this study, IIF characteristics of hepatocytes cultured in a collagen matrix were determined using cryomicroscopy. Four factors influenced the IIF behavior of the hepatocytes in the matrix: cooling rate, final cooling temperature, concentration of Me2SO, and time in culture prior to freezing. The maximum cumulative fraction of cells with IIF increased with increasing cooling rate. For cultured cells frozen in Dulbecco's modified Eagle's medium (DMEM), the cooling rate for which 50% of the cells formed ice (B50) was 70 degrees C/min for cells frozen after 1 day in culture and decreased to 15 degrees C/min for cells frozen after 7 days in culture. When cells were frozen in a 0.5 M Me2SO + DMEM solution, the value of B50 decreased from 70 to 50 degrees C/min for cells in culture for 1 day and from 15 to 10 degrees C/min for cells in culture for 7 days. The value of the average temperature for IIF (TIIF) for cultured cells was only slightly depressed by the addition of Me2SO when compared to the IIF behavior of other cell types. The results of this study indicate that the presence of the collagen matrix alters significantly the IIF characteristics of hepatocytes. Thus freezing studies using hepatocytes in suspension are not useful in predicting the freezing behavior of hepatocytes cultured in a collagen matrix. Furthermore, the weak effect of Me2SO on IIF characteristics implies that lower concentrations of Me2SO (0.5 M) may be just as effective in preserving viability. Finally, the value of B50 measured in this study indicates that cooling rates nearly an order of magnitude faster than those previously investigated could be used for cryopreservation of the hepatocytes in a collagen gel.  相似文献   

7.
de Graaf IA  Koster HJ 《Cryobiology》2001,43(3):224-237
This study examined whether tissue vitrification, promoted by partitioning within the tissue, could be the mechanism explaining the high viability of rat liver slices, rapidly frozen after preincubation with 18% Me2SO or VS4 (a 7.5 M mixture of Me2SO, 1,2-propanediol, and formamide with weight ratio 21.5:15:2.4). To achieve this, we first determined the extent to which crystallization or vitrification occurred in cryoprotectant solutions (Me2SO and VS4) and within liver slices impregnated with these solutions. Second, we determined how these events were related to survival of slices after thawing. Water crystallization was evaluated by differential scanning calorimetry and viability was determined by histomorphological examination of the slices after culturing at 37 degrees C for 4 h. VS4-preincubated liver slices indeed behaved differently from bulk VS4 solution, because, when vitrified, they had a lower tendency to devitrify. Vitrified VS4-preincubated slices that were warmed sufficiently rapid to prevent devitrification had a high viability. When VS4 was diluted (to 75%) or if warming was not fast enough to prevent ice formation, slices had a low viability. With 45% Me2SO, low viability of cryopreserved slices was caused by cryoprotectant toxicity. Surprisingly, liver slices preincubated with 18% Me2SO or 50% VS4 had a high viability despite the formation of ice within the slice. In conclusion, tissue vitrification provides a mechanism that explains the high viability of VS4-preincubated slices after ultrarapid freezing and thawing (>800 degrees C/min). Slices that are preincubated with moderately concentrated cryoprotectant solutions (18% Me2SO, 50% VS4) and cooled rapidly (100 degrees C/min) survive cryopreservation despite the formation of ice crystals within the slice.  相似文献   

8.
Cryopreservation of seabream (Sparus aurata) spermatozoa   总被引:3,自引:0,他引:3  
The aim of this research was to optimize protocols for freezing spermatozoa of seabream (Sparus aurata). All the phases of the cryopreservation procedure (sampling, choosing the cryoprotective extender, cooling, freezing, and thawing) were studied in relation to the species of spermatozoa under examination, so as to be able to restore on thawing the morphological and physiological characteristics of fresh semen. Seabream spermatozoa were collected by stripping and transported to the laboratory chilled (0-2 degrees C). Five cryoprotectants, dimethyl sulfoxide (Me(2)SO), ethylene glycol (EG), 1,2-propylene glycol (PG), glycerol, and methanol, were tested at concentrations between 5 and 15% by volume to evaluate their effect on the motility of semen exposed for up to 30 min at 26 degrees C. The less toxic cryoprotectants, 10% EG, 10% PG, and 5% Me(2)SO, respectively, were added to 1% NaCl to formulate the extenders for freezing. The semen was diluted 1:6 with the extender, inserted into 0.25-ml plastic straws by Pasteur pipette, and frozen using a cooling rate of either 10 or 15 degrees C/min to -150 degrees C followed by transfer and storage in liquid nitrogen (-196 degrees C). The straws were thawed at 15 degrees C/s. On thawing, the best motility was obtained with 5% Me(2)SO, although both 10% PG and EG showed good results; no differences were found between the two freezing gradients, although semen frozen with the 10 degrees C/min gradient showed a slightly higher and more prolonged motility.  相似文献   

9.
S M Mutetwa  E R James 《Cryobiology》1984,21(5):552-558
Various cooling and warming rates were investigated to determine the optimum conditions for cryopreserving the intraerythrocytic stages of Plasmodium chabaudi. Infected blood, equilibrated in 10% v/v glycerol at 37 degrees C or in 15% v/v Me2SO at 0 degree C for 10 min, was cryopreserved using cooling rates between 1 and 5100 degrees C min-1. After overnight storage in liquid nitrogen the samples were warmed at 12,000 degrees C min-1. Warming rates between 1 and 12,000 degrees C min-1 were investigated using samples previously cooled at 3600 degrees C min-1. After thawing, the glycerol and Me2SO were removed by dilution in 15% v/v glucose-supplemented phosphate-buffered saline. Survival was assayed by inoculation of groups of five mice each with 10(6) infected cells and the time taken to reach a level of 2% parasitemia estimated. The optimum cooling rate was 3600 degrees C min-1 for parasites frozen using either 10% glycerol or 15% Me2SO; the pre-2% patent periods were 0.90 and 1.01 days above control values (representing survival levels of 21 and 17.5%, respectively). The optimum warming rate was 12,000 degrees C min-1; the pre-2% patent periods were 1.01 and 1.32 days above control values, respectively (18 and 10% survival), for glycerol and Me2SO. With ethanediol (5% v/v) and sucrose (15% w/v) as cryoprotectants the optimum warming rates were also 12,000 degrees C min-1 while the optimum cooling rates were 330 and 3600 degrees C min-1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Extracellular freezing injury at high subzero temperatures in human polymorphonuclear cells (PMNs) was studied with a cryomicroscope, electron microscope, and functional assays (phagocytosis, microbicidal activity, and chemotaxis). There are at least four major factors in freezing injury: osmotic stress, chilling, cold shock, and dilution shock. Extracellularly frozen PMNs lose functions when cooled to -2 degrees C without a cryoprotectant. Cells lose volume on freezing to the same degree as in hypertonic exposure. PMNs have a minimum volume to which they can shrink without injury. Greater dehydration produces irreversible injury to cellular functions, and cells eventually collapse under high osmotic stress. Chilling sensitivity is seen in slowly chilled, supercooled PMNs below -5 degrees C; at -7 degrees C, functions are lost in 1 h. This injury can be prevented by the addition of Me2SO but not glycerol. Me2SO does not, however, prevent cold shock (injury due to rapid cooling), which is seen during cooling at 10 degrees C/min to -14 degrees C, but not during slow cooling at 0.5 degrees C/min. One of the problems of using glycerol as a cryoprotectant stems from the high sensitivity of PMNs to dilution shock during the dilution or removal of glycerol.  相似文献   

11.
P Clark  G M Fahy  A M Karow 《Cryobiology》1984,21(3):274-284
The [K+]/[Na+] ratio of rabbit renal cortical slices was used to examine, at 25 degrees C, the effects on viability of three cryoprotectant agents (CPA) (dimethyl sulfoxide (Me2SO), ethylene glycol, and glycerol) in combination with three vehicle solutions (Krebs-Henseleit (K-H), solution A, and RPS-2). Viability assessment by [K+]/[Na+] for all test solutions was made after incubating the slices in modified Cross-Taggart solution (C-T). With K-H and solution A, all concentrations of ethylene glycol and glycerol resulted in lowered ratios, whereas with Me2SO, concentrations greater than 1.4 M are required to reduce [K+]/[Na+]. With RPS-2 no decrease in the ratios was found until concentrations greater than 2.8 M were reached for all three CPAs. Binding of Me2SO to albumin, studied using [14C]Me2SO, was inhibited by RPS-2 when compared to K-H. Introduction and removal of Me2SO at 10 degrees C allowed an improvement in viability, at higher Me2SO concentrations, as compared to 25 degrees C.  相似文献   

12.
Larvae of the sea urchin, Evechinus chloroticus, at varying stages of development, were assessed for their potential to survive cryopreservation. Ethylene glycol (EG) and dimethyl sulphoxide (Me2SO), at concentrations of 1-2 M, were evaluated as cryoprotectants (CPAs) in freezing regimes initially based on methods established for freezing larvae of other sea urchin species. Subsequent work varied cooling rate, holding temperature, holding time, and plunge temperature. Ethylene glycol was less toxic to larvae than Me2SO. However, no larvae survived freezing and thawing in EG. Larvae frozen in Me2SO at the gastrula stage and 4-armed pluteus stage regained motility post-thawing. The most successful freezing regime cooled straws containing larvae in 1.5 M Me2SO from 0 to -35 degrees C at 2.5 degrees C min(-1), held at -35 degrees C for 5 min, then plunged straws into liquid nitrogen. Motility was high 2-4 h post-thawing using this regime but decreased markedly within 24 h. Some 4-armed pluteus larvae that survived beyond this time developed through to metamorphosis and settled. Different Me2SO concentrations and supplementary trehalose did not improve long-term survival. Large variation in post-thaw survival was observed among batches of larvae produced from different females.  相似文献   

13.
Renal cortical slices were treated with 2.1 M cryoprotectant in RPS-2 vehicle solution, cooled at one of four rates to -40 degrees C, then immediately warmed at one of four rates to 25 degrees C for determination of the [K+]/[Na+] after a standard incubation period. Results are presented in the form of survival "topographical maps" or surfaces with the x axis representing [K+]/[Na+]; the y axis, cooling rate; and the z axis, warming rate. The rate of temperature change fell in the range of 0.5 to 10 degrees C/min. The results suggest that when RPS-2 vehicle solution is used for 2.1 M cryoprotectants, Me2SO offers the prospect for greatest post-thaw recovery. With this vehicle-cryoprotective agent combination, the greatest post-thaw recovery is attained with cooling-warming combinations of -3, +4, and -0.5, +10 degrees C/min.  相似文献   

14.
In order to preserve genetic resources of chum salmon, Oncorhynchus keta, optimum conditions for cryopreservation of isolated blastomeres were investigated. Survival rates under various conditions were compared: the nature and the concentration of cryoprotectants before and after freezing, the seeding temperature, and the developmental stages of donor embryos. Isolated blastomeres immersed for 30 min in Eagle's MEM containing both a cryoprotectant and 10% fetal bovine serum (FBS) at 10 degrees C were transferred into a straw and frozen at 1 degrees C/min to -30 degrees C by a programmable freezer before being plunged into liquid nitrogen. Ice seeding was carried out at -5 to -15 degrees C. Frozen blastomeres were thawed in water at 15 degrees C. Blastomeres cryopreserved with MEM containing 10% dimethyl sulfoxide (Me(2)SO) and 10% FBS (10% Me(2)SO/MEM10) showed higher survival rates than those cryopreserved with MEM containing 10% FBS and 10% glycerol, ethyleneglycol, 1, 2-propanediol, or sucrose. Blastomeres treated with 10% Me(2)SO/MEM10 showed higher survival rates than those treated with MEM containing only 10% Me(2)SO. Blastomeres seeded above -10 degrees C showed higher survival rates than non-seeded ones. Frozen blastomeres at advanced stages demonstrated high survival rates. Blastomeres cryopreserved under optimum conditions showed survival rates of 59.3+/-2.8%. These results indicate that 10% Me(2)SO/MEM10 is a suitable cryoprotectant medium to cryopreserve chum salmon blastomeres, that seeding should be carried out above -10 degrees C on pre-freezing, and that blastomeres at the blastula stage should be used as material.  相似文献   

15.
This investigation was carried out to develop a simple sperm cryopreservation model using a chemically defined synthetic medium (modified Ringer's solution) and mature goat cauda epididymal sperm as the model system. Rates of cooling, freezing, and maximum freezing temperature were manipulated with the help of a computer-controlled programmable biofreezer. Highly motile goat cauda sperm dispersed in a modified Ringer's solution was subjected to the freezing protocol: cooling 0.25 degrees C min(-1) to 5 degrees C, 5 degrees C min (-1) to -20 degrees C, 20 degrees C min(-1) to -100 degrees C, prior to plunging into liquid nitrogen. In the absence of any cryoprotective agent, all of the spermatozoa lost their motility. Addition of glycerol (0.22 to 0.87 M) caused a dose-dependent increase of sperm motility recovery. The highest recovery of forward and total motility was (32 and 35%, respectively) at 0.87 M. Further increase of the glycerol concentration caused a marked decrease in motility. Changes in the cooling rate particularly before and during freezing had a notable effect on the sperm motility recovery. There was no or low recovery (0-18%) of sperm motility when the cells were transferred directly to liquid nitrogen from the initial two cooling stages. The data demonstrate the importance of all of the cooling stages in the cryopreservation of the cells. Like glycerol, dimethyl sulfoxide (Me(2)SO) and ethylene glycol also showed a dose-dependent increase in motility recovery as well as a biphasic curve of cryoprotection. At optimal concentrations, dimethyl sulfoxide (1.00 M) and ethylene glycol (1.29 M) were effective in recovering sperm motility to the extent of 20 and 13%, respectively. Thus these reagents have markedly lower cryoprotection potential than glycerol.  相似文献   

16.
The freeze denaturation of model proteins, LDH, ADH, and catalase, was investigated in absence of cryoprotectants using a microcryostage under well-controlled freezing and thawing rates. Most of the experimental data were obtained from a study using a dilute solution with an enzyme concentration of 0.025 g/l. The dependence of activity recovery of proteins on the freezing and thawing rates showed a reciprocal and independent effect, that is, slow freezing (at a freezing rate about 1 degrees C/min) and fast thawing (at a thawing rate >10 degrees C/min) produced higher activity recovery, whereas fast freezing with slow thawing resulted in more severe damage to proteins. With minimizing the freezing concentration and pH change of buffer solution by using a potassium phosphate buffer, this phenomenon could be ascribed to surface-induced denaturation during freezing and thawing process. Upon the fast freezing (e.g., when the freezing rate >20 degrees C/min), small ice crystals and a relatively large surface area of ice-liquid interface are formed, which increases the exposure of protein molecules to the ice-liquid interface and hence increases the damage to the proteins. During thawing, additional damage to proteins is caused by recrystallization process. Recrystallization exerts additional interfacial tension or shear on the entrapped proteins and hence causes additional damage to the latter. When buffer solutes participated during freezing, the activity recovery of proteins after freezing and thawing decreased due to the change of buffer solution pH during freezing. However, the patterns of the dependence on freezing and thawing rates of activity recovery did not change except for that at extreme low freezing rates (<0.5 degrees C/min). The results exhibited that the freezing damage of protein in aqueous solutions could be reduced by changing the buffer type and composition and by optimizing the freezing-thawing protocol.  相似文献   

17.
T Kojima  T Soma  N Oguri 《Cryobiology》1985,22(5):409-416
The aim of the present study was to examine effects of altering thawing conditions and procedure of addition and dilution of Me2SO on the viability of frozen-thawed rabbit morulae. Five hundred and sixty two rabbit morulae were cooled from room temperature to -80 degrees C at 1 degree C/min in the presence of 1.5 M dimethyl sulfoxide (Me2SO) using a programmable liquid nitrogen vapor freezing machine with an automatic seeding device, cooled rapidly, and stored in liquid nitrogen. When Me2SO was added in a single step, the frozen embryos were thawed in ambient air at 40 degrees C/min and Me2SO was diluted in a single step, 99 of 107 (93%) embryos cultured for 48 hr and 12 of 32 (38%) embryos transferred to 6 recipients developed to expanding blastocysts and viable fetuses, respectively. When Me2SO was added in a single step and the frozen embryos were thawed at the same rate and transferred directly without removal of Me2SO to culture media or oviducts of 8 recipients, 67 of 75 (89%) embryos cultured and 12 of 40 (30%) embryos transferred developed to expanding blastocysts and viable fetuses, respectively. There were no significant differences between these survival rates and survival rates obtained by conventional method, i.e., frozen embryos were thawed at 4 degrees C/min by interrupted slow method and Me2SO was added and diluted in a stepwise manner.  相似文献   

18.
Vitrification of human monocytes   总被引:1,自引:1,他引:1  
Human monocytes purified from peripheral blood by counterflow centrifugal elutriation were cryopreserved in a vitreous state at 1 atm pressure. The vitrification solution was Hanks' balanced salt solution (HBSS) containing (w/v) 20.5% Me2SO, 15.5% acetamide, 10% propylene glycol, and 6% polyethylene glycol. Fifteen milliliters of this solution was added dropwise to 1 ml of a concentrated monocyte suspension at 0 degrees C. Of this, 0.8 ml was drawn into silicone tubing and rapidly cooled to liquid nitrogen temperature, stored for various periods, and rapidly warmed in an ice bath. The vitrification solution was removed by slow addition of HBSS containing 20% fetal calf serum. The numerical cell recovery was about 92% and most of these retained normal phagocytic and chemotactic ability. Differential scanning calorimeter records of the solution show a glass transition at -115 degrees C during cooling and warming, but no evidence of ice formation during cooling. Devitrification occurs at about -70 degrees C during warming at rates as rapid as 80 degrees C/min. The amount of devitrification is dependent upon the warming rate. Freeze-fracture freeze-etch electron microscope observations revealed no ice either intra- or extracellularly in samples rapidly cooled to liquid nitrogen temperatures except for small amounts in some cellular organelles. However, if these cell suspensions were warmed rapidly to -70 degrees C and then held for 5 min, allowing devitrification to occur, the preparation contained significant amounts of both intra- and extracellular ice. Biological data showed that this devitrification was associated with severe loss of cell function.  相似文献   

19.
The effect of hematocrit (2 versus 75%) has been studied on human red blood cells frozen and thawed in 2 M glycerol at a range of cooling rates (0.8-850 degrees C/min) and warming rates (0.1-200 degrees C/min). The data obtained at a hematocrit of 2% agree well with the data of R. H. Miller and P. Mazur (Cryobiology 13, 404-414, 1976). The results at a hematocrit of 75% show a decrease in recovery with increased cell packing, primarily dependent on warming rate at cooling rates less than 100 degrees C/min and on cooling rate at higher cooling rates. Rapid warming reduced the packing effect, whereas cooling faster than 100 degrees C/min accentuated it. It has been argued that these effects are unlikely to be due to modulation of the generally accepted mechanisms of freezing injury, that is, solution effects and intracellular freezing. It has been suggested that they may be explained by effects of cooling and warming rates on the dimensions of the liquid channels in which the cells are accommodated during freezing and thawing.  相似文献   

20.
Cooling and freezing damage platelet membrane integrity.   总被引:6,自引:0,他引:6  
Cytoskeletal rearrangements and a membrane lipid phase transition (liquid crystalline to gel) occur in platelets on cooling from 23 to 4 degrees C. A consequence of these structural alterations is irreversible cellular damage. We investigated whether platelet membrane integrity could be preserved by (a) previously studied combinations of a calcium chelator (EGTA) and microfilament stabilizer (cytochalasin B) with apparent benefit in protecting platelets from cooling injury or (b) agents of known benefit in protecting membranes and proteins from freezing injury. Platelet function and activation before and after freezing or cooling were measured by agglutination with ristocetin, aggregation with thrombin or ADP, platelet-induced clot retraction (PICR), and expression of P-selectin. Platelets were loaded with 10 nM fluorescein diacetate. After freezing or cooling, the preparations were centrifuged and the supernatant was measured for fluorescein. For cooling experiments, fresh platelets were chilled at 4 degrees C for 1 to 21 days with or without the combination of 80 microM EGTA/AM and 2 microM cytochalasin B (EGTA/AM-CytoB) and then warmed rapidly at 37 degrees C. For freezing experiments, 5% dimethyl sulfoxide (Me2SO) or 5 mM glycerol were added to fresh platelets. The preparations were then frozen at -1 degrees C/min to -70 degrees C and then thawed rapidly at 37 degrees C. Platelet membrane integrity, as measured by supernatant levels of fluorescein, correlated inversely with platelet function. Chilling platelets at 4 degrees C with EGTA/AM-CytoB showed a gradual loss of membrane integrity, with maximum loss reached on day 7. The loss of membrane integrity preceded complete loss of function as demonstrated by PICR. In contrast, platelets chilled without these agents had complete loss of membrane integrity and function after 1 day of storage. Freezing platelets in Me2SO resulted in far less release of fluorescein than did freezing with or without other cryoprotectants (P < 0.001). This result correlated with enhanced function as demonstrated by PICR and supports earlier observations that Me2SO protects platelet membranes from freezing injury. Release of fluorescein into the surrounding medium reflected loss of membrane integrity and function in both cooled and frozen platelets. Membrane cytoskeletal rearrangements are linked to membrane changes during storage. These results may be generally applicable to the study of platelet storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号