首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The self-transmissible, broad-host-range (BHR) plasmid pMOL98 was previously isolated from polluted soil using a triparental plasmid capture approach and shown to possess a replicon similar to that of the BHR plasmids pSB102 and pIPO2. Here, complete sequence analysis and comparative genomics reveal that the 55.5 kb nucleotide sequence of pMOL98 shows extensive sequence similarity and synteny with the BHR plasmid family that now includes pIPO2, pSB102, pTER331, and pMRAD02. They share a plasmid backbone comprising replication, partitioning and conjugative transfer functions. Comparison of the variable accessory regions of these plasmids shows that the majority of natural transposons, as well as the mini-transposon used to mark the plasmids, are inserted in the parA locus. The transposon unique to pMOL98 appears to have inserted from the chromosome of the recipient strain used in the plasmid capture procedure. This demonstrates the necessity for careful screening of plasmids and host chromosomes to avoid mis-interpretation of plasmid genome content. The presence of very similar BHR plasmids with different accessory genes in geographically distinct locations suggests an important role in horizontal gene exchange and bacterial adaptation for this recently defined plasmid group, which we propose to name “PromA”. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Employing the biparental exogenous plasmid isolation method, conjugative plasmids conferring mercury resistance were isolated from the microbial community of the rhizosphere of field grown alfalfa plants. Five different plasmids were identified, designated pSB101–pSB105. One of the plasmids, pSB102, displayed broad host range (bhr) properties for plasmid replication and transfer unrelated to the known incompatibility (Inc) groups of bhr plasmids IncP-1, IncW, IncN and IncA/C. Nucleotide sequence analysis of plasmid pSB102 revealed a size of 55 578 bp. The transfer region of pSB102 was predicted on the basis of sequence similarity to those of other plasmids and included a putative mating pair formation apparatus most closely related to the type IV secretion system encoded on the chromosome of the mammalian pathogen Brucella sp. The region encoding replication and maintenance functions comprised genes exhibiting different degrees of similarity to RepA, KorA, IncC and KorB of bhr plasmids pSa (IncW), pM3 (IncP-9), R751 (IncP-1β) and RK2 (IncP-1α), respectively. The mercury resistance determinants were located on a transposable element of the Tn5053 family designated Tn5718. No putative functions could be assigned to a quarter of the coding capacity of pSB102 on the basis of comparisons with database entries. The genetic organization of the pSB102 transfer region revealed striking similarities to plasmid pXF51 of the plant pathogen Xylella fastidiosa.  相似文献   

3.
Plasmid pTer331 from the bacterium Collimonas fungivorans Ter331 is a new member of the pIPO2/pSB102 family of environmental plasmids. The 40 457-bp sequence of pTer331 codes for 44 putative ORFs, most of which represent genes involved in replication, partitioning and transfer of the plasmid. We confirmed that pTer331 is stably maintained in its native host. Deletion analysis identified a mini-replicon capable of replicating autonomously in Escherichia coli and Pseudomonas putida. Furthermore, plasmid pTer331 was able to mobilize and retromobilize IncQ plasmid pSM1890 at typical rates of 10(-4) and 10(-8), respectively. Analysis of the 91% DNA sequence identity between pTer331 and pIPO2 revealed functional conservation of coding sequences, the deletion of DNA fragments flanked by short direct repeats (DR), and sequence preservation of long DRs. In addition, we experimentally established that pTer331 has no obvious contribution in several of the phenotypes that are characteristic of its host C. fungivorans Ter331, including the ability to efficiently colonize plant roots. Based on our findings, we hypothesize that cryptic plasmids such as pTer331 and pIPO2 might not confer an individual advantage to bacteria, but, due to their broad-host-range and ability to retromobilize, benefit bacterial populations by accelerating the intracommunal dissemination of the mobile gene pool.  相似文献   

4.
The sequence of plasmid pXF51 from the plant pathogen Xylella fastidiosa, the causal agent of citrus variegated chlorosis, has been analyzed. This plasmid codes for 65 open reading frames (ORFs), organized into four main regions, containing genes related to replication, mobilization, and conjugative transfer. Twenty-five ORFs have no counterparts in the public sequence databases, and 7 are similar to conserved hypothetical proteins from other bacteria. A pXF51 incompatibility group has not been determined, as we could not find a typical replication origin. One cluster of conjugation-related genes (trb) seems to be incomplete in pXF51, and a copy of this sequence is found in the chromosome, suggesting it was generated by a duplication event. A second cluster (tra) contains all genes necessary for conjugation transfer to occur, showing a conserved organization with other conjugative plasmids. An identifiable origin of transfer similar to oriT from IncP plasmids is found adjacent to genes encoding two mobilization proteins. None of the ORFs with putative assigned function could be predicted as having a role in pathogenesis, except for a virulence-associated protein D homolog. These results indicate that even though pXF51 appears not to have a direct role in Xylella pathogenesis, it is a conjugative plasmid that could be important for lateral gene transfer in this bacterium. This property may be of great importance for future development of transformation techniques in X. fastidiosa.  相似文献   

5.
Abstract The presence of transfer proficient plasmids in bacteria isolated from the leaves of sugar beet ( Beta vulgaris L.) was studied. Of 435 bacteria sampled 79 (18%) contained plasmids. Pseudomonads (30%), Erwinia (12%) and Klebsiella (9%) were the largest populations sampled of which 22%, 33% and 29%, respectively, contained plasmids. The ability of these plasmids to self-transfer or mediate the mobilization of the tra mob+ broad host range IncQ plasmid R300B was determined. R300B was maintained in 61/79 natural plasmid containing isolates, the Gram positive isolates could not support R300B. Pseudomonas aureofaciens SBW25, isolated from sugar beet leaves, was chromosomally marked with a tetracycline resistance gene and used as a recipient (SBW25ETc). Five isolates of Erwinia herbicola and one of Erwinia salicis containing natural plasmids were able to mobilize R300B into the recombinant, SBW25ETc. These mobolizing ( tra+ ) plasmids were not maintained in transconjugant SBW25 cells. Analysis of the fragment patterns of Pst I digested plasmid DNA demonstrated that four (pSB139, pSB140, pSB142, pSB146; 110 kb) were identical, one (pSB153; 65 kb) was common to a subset of fragments in these four and another (pSB169; 100 kb) was unique. Other natural isolates were able to transfer copper resistance ( Erwinia rhapontici , 2 strains) or mercury resistance ( Pseudomonas fluorescens SBW340) to a rifampicin resistant recipient Pseudomonas putida UWC1 but not to SBW25ETc. These self-transferable plasmids were not able to mobilize R300B. These data demonstrate that the phyllosphere supports indigenous microbial populations which have the capacity to transfer genetic material between bacteria of different genera.  相似文献   

6.
The sequence of plasmid pXF51 from the plant pathogen Xylella fastidiosa, the causal agent of citrus variegated chlorosis, has been analyzed. This plasmid codes for 65 open reading frames (ORFs), organized into four main regions, containing genes related to replication, mobilization, and conjugative transfer. Twenty-five ORFs have no counterparts in the public sequence databases, and 7 are similar to conserved hypothetical proteins from other bacteria. A pXF51 incompatibility group has not been determined, as we could not find a typical replication origin. One cluster of conjugation-related genes (trb) seems to be incomplete in pXF51, and a copy of this sequence is found in the chromosome, suggesting it was generated by a duplication event. A second cluster (tra) contains all genes necessary for conjugation transfer to occur, showing a conserved organization with other conjugative plasmids. An identifiable origin of transfer similar to oriT from IncP plasmids is found adjacent to genes encoding two mobilization proteins. None of the ORFs with putative assigned function could be predicted as having a role in pathogenesis, except for a virulence-associated protein D homolog. These results indicate that even though pXF51 appears not to have a direct role in Xylella pathogenesis, it is a conjugative plasmid that could be important for lateral gene transfer in this bacterium. This property may be of great importance for future development of transformation techniques in X. fastidiosa.  相似文献   

7.
Five of eight strains of Saccharomyces bailii and one of 13 strains of S. bisporus were found to harbour DNA plasmids. pSB1 and pSB2 plasmids were isolated from S. bailii strains IFO 0488 and IFO 1047, respectively, and pSB3 and pSB4 from S. bisporus strain IFO 1730. All four plasmids resemble 2-micrometers DNA of S. cerevisiae in that their molecular sizes are about 6 kb, each molecule possesses a pair of inverted repeats, they exist as a mixture of two isomers and their copy numbers in the native host are similar. None of them showed homology with 2-micrometers DNA or with each other by Southern hybridization under moderately stringent conditions, but pSB4 hybridized with the pSR1 DNA, which was found previously in a strain of S. rouxii. Each of the pSB plasmids has DNA sequence(s) effective for autonomous replication in S. cerevisiae. In S. cerevisiae, pSB3 and pSB4 showed intramolecular recombination but neither supported isomerization of 2-micrometers DNA.  相似文献   

8.
Wastewater treatment plants (WWTPs) are a reservoir for bacteria harbouring antibiotic resistance plasmids. To get a comprehensive overview on the plasmid metagenome of WWTP bacteria showing reduced susceptibility to certain antimicrobial drugs an ultrafast sequencing approach applying the 454-technology was carried out. One run on the GS 20 System yielded 346,427 reads with an average read length of 104 bases resulting in a total of 36,071,493 bases sequence data. The obtained plasmid metagenome was analysed and functionally annotated by means of the Sequence Analysis and Management System (SAMS) software package. Known plasmid genes could be identified within the WWTP plasmid metagenome data set by BLAST searches using the NCBI Plasmid Database. Most abundant hits represent genes involved in plasmid replication, stability, mobility and transposition. Mapping of plasmid metagenome reads to completely sequenced plasmids revealed that many sequences could be assigned to the cryptic pAsa plasmids previously identified in Aeromonas salmonicida subsp. salmonicida and to the accessory modules of the conjugative IncU resistance plasmid pFBAOT6 of Aeromonas punctata. Matches of sequence reads to antibiotic resistance genes indicate that plasmids from WWTP bacteria encode resistances to all major classes of antimicrobial drugs. Plasmid metagenome sequence reads could be assembled into 605 contigs with a minimum length of 500 bases. Contigs predominantly encode plasmid survival functions and transposition enzymes.  相似文献   

9.
Bioactive amounts of antibiotics as well as resistant bacteria reach the soil through manure fertilization. We investigated plasmids that may stimulate the environmental spread and interspecies transfer of antibiotic resistance. After treatment of two soils with manure, either with or without the sulfonamide antibiotic sulfadiazine, a significant increase in copies of the sulfonamide resistance gene sul2 was detected by qPCR. All sul2 carrying plasmids, captured in Escherichia coli from soil, belonged to a novel class of self-transferable replicons. Manuring and sulfadiazine significantly increased the abundance of this replicon type in a chemically fertilized but not in an annually manured soil, as determined by qPCR targeting a transfer gene. Restriction patterns and antibiograms showed a considerable diversity within this novel plasmid group. Analysis of three complete plasmid sequences revealed a conserved 30 kbp backbone with only 36% G+C content, comprised of transfer and maintenance genes with moderate homology to plasmid pIPO2 and a replication module ( rep and oriV ) of other descent. The plasmids differed in composition of the 27.0–28.3 kbp accessory region, each of which carried IS CR2 and several resistance genes. Acinetobacter spp. was identified as a potential host of such LowGC-type plasmids in manure and soil.  相似文献   

10.
Watson RJ  Heys R 《Plasmid》2006,55(2):87-98
The replication (rep) regions of small plasmids from three Sinorhizobium meliloti strains were cloned by marker rescue. Two unique replication regions were identified, one of which was common to two different strains. Plasmid pBB83 carried a 7.2 kbp rep region from a 42 kbp plasmid, and pBB84 carried a 4.5 kbp rep region from a 36 kbp plasmid. The cloned rep regions were of different compatibility types, and were capable of displacing their parent plasmids from S. meliloti. Neither could function in a PolA- strain of Escherichia coli. The cloned replication regions were less stable in S. meliloti than their parent plasmids. The rep genes for each plasmid were localized to less than 2.5 kbp segments. Sequencing data revealed that the pBB83 Rep protein is uncommon, with partial identity to a protein encoded by a plasmid from S. meliloti GR4 [Mercado-Blanco, J., Olivares, J., 1994. The large nonsymbiotic plasmid pRmeGR4a of Rhizobium meliloti GR4 encodes a protein involved in replication that has homology with the RepC protein of Agrobacterium plasmids. Plasmid 32, 75-79]. However, the cloned DNA fragment also contains a truncated segment of the common repABC genes, suggesting that the parent plasmid contained two sets of replication genes. Other genes and an IS-element within the insert are most closely related to sequences derived from the Rhizobiaceae family, suggesting that the plasmid has a limited host range. In contrast, the pBB84 rep region contained genes similar to those associated with several broad host-range plasmids, and its Rep protein is related to that of a Pseudomonas aeruginosa broad host-range plasmid, pVS1 [Heeb, S., Itoh, Y., Nishijyo, T., Schnider, U., Keel, C., Wade, J., Walsh, U., O'Gara, F., Haas, D., 2000. Small, stable shuttle vectors based on the minimal pVS1 replicon for use in gram-negative, plant-associated bacteria. Mol. Plant-Microbe Interact. 13, 232-237]. The pBB84 rep region also includes a probable origin of replication, consisting of DNA boxes flanking a series of direct repeats and an AT-rich sequence.  相似文献   

11.
提高大豆根瘤菌质粒稳定性的研究   总被引:1,自引:0,他引:1  
以发光酶基因luxAB作为报告基因,将广谱稳定性质 粒pTR102的parCBA/DE基因导入含37kb增效片段的pLARF3并去除该质粒的cos序列,构建成重组质粒pHN115和pHN156。同时,构建只带有cos序列和luxAB的参比质粒pHN157和pHN158。将上述4种质粒通过三亲本杂交分别导入费氏中华根瘤菌(Sinorhizobiu m fredii) HN01,将pHN155和pHN158通过两亲本杂交分别导入大豆慢生根瘤菌(Bradyrhizobium japonicum)TA11,在人工继代培养条件下比较测定其质粒保持率。结果表明;经连续转接培养7次后,pHN155、pHN156、pHN157和pHN158在HN01中的质粒保持率分 别为100%、67%、72%和92% 。连续转接培养4次后,pHN155和pHN158在TA11中的质粒保持率分别为98%和92%。说明parCBA/DE基因能显著提高质粒在快、慢生型大豆根瘤菌中的遗传稳定性,cos序列的去除也有一定的作用。  相似文献   

12.
This study was initiated to characterize a small Xylella fastidiosa (X. fastidiosa) plasmid and attempt to create a X. fastidosa/Escherichia coli shuttle vector that was stable in planta. Restriction enzyme analysis of a 1.3kb plasmid DNA from a grape-infecting strain of X. fastidiosa (UCLA) revealed the presence of three similar, but genetically distinct, plasmids, pUCLAs. Evidence that suggests the pUCLA plasmids replicate via a rolling-circle (RC) mechanism include: (i) the presence of ssDNA in X. fastidiosa cells; (ii) the presence of conserved motifs in the predicted ORF1 that are typical of initiator (Rep) proteins associated with RC replication; (iii) high amino acid identity between the putative Rep proteins of pUCLAs and Pf3, a filamentous bacteriophage of Pseudomonas aeruginosa that replicates by a RC mechanism; and (iv) the presence of a putative origin of replication upstream of ORF1 that has the potential to form secondary hairpin structures. One DNA motif present in pUCLA shared sequence similarity to known nicking sites in the origins of replication of other RC plasmids and phages. The shuttle vector, pXF001, successfully transformed grape X. fastidiosa strains and was found to be present as autonomous, structurally unchanged DNA molecules in X. fastidiosa. However, pXF001 was not stably maintained in X. fastidiosa without antibiotic selection.  相似文献   

13.
Three large cryptic plasmids from different isolates of Acidithiobacillus caldus were rescued by using an in vitro transposition system that delivers a kanamycin-selectable marker and an Escherichia coli plasmid origin of replication. The largest of the plasmids, the 65-kb plasmid pTcM1, was isolated from a South African A. caldus strain, MNG. This plasmid was sequenced and compared to that of pTcF1 (39 kb, from strain "f," South Africa) and pC-SH12 (29 kb, from strain C-SH12, Australia). With the exception of a 2.7-kb insertion sequence, pC-SH12 appears to represent the DNA common to all three plasmids and includes a number of accessory genes plus the plasmid "backbone" containing the replication region. The two larger plasmids carry, in addition, a number of insertion sequences of the ISL3 family and a composite transposon related to the Tn21 subfamily containing a highly mosaic region within the borders of the inverted repeats. Genes coding for arsenic resistance, plasmid mobilization, plasmid stability, and a putative restriction-modification system occur within these mosaic regions.  相似文献   

14.
Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida   总被引:3,自引:0,他引:3  
The TOL plasmid pWW0 (117 kb) is the best studied catabolic plasmid and the archetype of the IncP-9 plasmid incompatibility group from Pseudomonas. It carries the degradative (xyl) genes for toluenes and xylenes within catabolic transposons Tn4651 and Tn4653. Analysis of the complete pWW0 nucleotide sequence revealed 148 putative open reading frames. Of these, 77 showed similarity to published sequences in the available databases predicting functions for: plasmid replication, stable maintenance and transfer; phenotypic determinants; gene regulation and expression; and transposition. All identifiable transposition functions lay within the boundaries of the 70 kb transposon Tn4653, leaving a 46 kb sector containing all the IncP-9 core functions. The replicon and stable inheritance region was very similar to the mini-replicon from IncP-9 antibiotic resistance plasmid pM3, with their Rep proteins forming a novel group of initiation proteins. pWW0 transfer functions exist as two blocks encoding putative DNA processing and mating pair formation genes, with organizational and sequence similarity to IncW plasmids. In addition to the known Tn4651 and IS1246 elements, two additional transposable elements were identified as well as several putative transposition functions, which are probably genetic remnants from previous transposition events. Genes likely to be responsible for known resistance to ultraviolet light and free radicals were identified. Other putative phenotypic functions identified included resistance to mercury and other metal ions, as well as to quaternary ammonium compounds. The complexity and size of pWW0 is largely the result of the mosaic organization of the transposable elements that it carries, rather than the backbone functions of IncP-9 plasmids.  相似文献   

15.
In this study, the DNA sequence of one of the transfer regions of the IncHI1 plasmid R27 was determined. This region, which corresponds to coordinates 0-40 on the R27 map has been called the Tra2 region, and is believed to be involved in mating pair formation. DNA sequence analysis of the transfer region identified 11 open reading frames which showed similarities to the transfer genes from other conjugative systems. The R27 transfer genes appear to most closely resemble the genes from the F plasmid and Sphingomonas aromaticivorans plasmid pNL1, both within the individual genes and in the overall gene order. The Tra2 region is also distinct in that replication, partitioning, and stability genes are found in the middle of the transfer region. The R27 Tra2 region also contains a gene, trhF, which appears to be related to the TraF genes of Agrobacterium and Rhizobium species. This, along with the temperature-sensitive transfer system found in both H plasmids and Agrobacterium, leads to the speculation that the R27 transfer region evolved from both ancestral F-like and P-like plasmids.  相似文献   

16.
I Utatsu  S Sakamoto  T Imura    A Toh-e 《Journal of bacteriology》1987,169(12):5537-5545
The nucleotide sequence of two Zygosaccharomyces plasmids, pSB2 (5,415 base pairs), isolated from Zygosaccharomyces bailii, and pSM1 (5,416 base pairs), isolated from Zygosaccharomyces fermentati Naganishi, was determined. The predicted amino acid sequences of open reading frames among six yeast plasmids that resemble 2 microns DNA indicated regional sequence similarities among FLP proteins. Greater similarities were seen among Zygosaccharomyces plasmids (pSB2, pSB3, pSR1, and pSM1) than other combinations. A putative recognition site for the FLP enzyme of a Zygosaccharomyces plasmid also showed some conservation, especially in the 4 nucleotides flanking the central spacer region. From comparative studies of the sequences of putative genes of each plasmid, we propose an apparent phylogenetic relationship among yeast plasmids resembling 2 micron DNA. Among the Zygosaccharomyces plasmids, pSB2 and pSR1 are most closely related, since not only were the FLP enzymes of these two plasmids most closely related, but also the amino acid sequence of the putative P gene of pSR1 showed clear homology with that of open reading frame B of pSB2.  相似文献   

17.
A set of self-transmissible plasmids with IncQ plasmid-mobilizing capacity was isolated by triparental exogenous isolation from the wheat rhizosphere with an Escherichia coli IncQ plasmid host and a Ralstonia eutropha recipient. Three plasmids of 38 to 45 kb, denoted pIPO1, pIPO2, and pIPO3, were selected for further study. No selectable traits (antibiotic or heavy-metal resistance) were identified in these plasmids. The plasmids were characterized by replicon typing via PCR and hybridization with replicon-specific probes and other hybridizations. pIPO1 and pIPO3 were similar to each other, whereas pIPO2 was different. None of these plasmids belonged to any known incompatibility group. pIPO2 was selected for further work, and a mini-Tn5-tet transposon was inserted to confer selectability. Plasmid pIPO2 had a broad IncQ plasmid mobilization and self-transfer range among the alpha, beta, and gamma subclasses of the Proteobacteria but did not show productive transfer to gram-positive bacteria. Plasmid pIPO2 mobilized IncQ plasmid pIE723 from Pseudomonas fluorescens to diverse indigenous proteobacteria in the rhizosphere of field-grown wheat. Transfer of pIE723 to indigenous bacteria was not observed in the absence of added pIPO2. A specific PCR primer system and a probe were developed for the detection of pIPO2-type plasmids in soil and rhizosphere. Analysis of soil DNA provided evidence for the presence of pIPO2 in inoculated wheat rhizosphere soil in the field study, as well as in the rhizosphere of uninoculated wheat plants growing in soil microcosms. The system failed to identify major reservoirs of pIPO2 in a variety of other soils.Conjugation is an important gene transfer mechanism for bacteria in the soil and rhizosphere (7, 27, 28), and the genes responsible for mating-aggregate formation and DNA transfer are often carried by self-transmissible plasmids. Such conjugative plasmids are known to be capable of recruiting chromosomal genes as well as mobilizing non-self-transmissible plasmids and hence can provide genetic plasticity to bacterial populations. In cases in which highly promiscuous plasmids are involved, such genetic interactions may occur between a broad range of bacteria (27, 28, 34). Plasmid transfer between introduced bacteria via conjugation in soil has been unequivocally shown in numerous microcosm experiments with different mating combinations including taxonomically diverse ones (15, 21, 27, 28, 31, 44).However, the abundance and putative role of plasmids present in indigenous bacterial populations in in situ genetic mobilization has so far been rarely studied (11, 19, 36). Hence, the extent to which natural bacterial communities are capable of providing gene-mobilizing capacity under the prevailing conditions in the soil and rhizosphere is still poorly understood. In a pioneering study, Top et al. were able to roughly quantify the prevalence of gene-mobilizing elements in soil by a quantitative exogenous isolation method (36). However, the elements that confer genetic plasticity to bacterial populations, in particular self-transmissible plasmids and conjugative transposons, may occur in fluctuating quantities in soil. Moreover, their prevalence may change as a result of dominating soil ecological factors such as the presence of a rhizosphere or chemical stress (29, 45). To assess such bacterial community responses, a molecular approach assessing the prevalence of plasmid-specific sequences in soil-extracted microbial DNA can be used (29).Fry and Day suggested a novel approach to directly obtain plasmids with mobilizing capacity from the environment (7). The method, denominated triparental exogenous isolation, involves the coincubation of a selectable plasmid recipient strain with a mixed soil bacterial community in the presence of another strain containing a mobilizable plasmid. Simultaneous selection for the recipient and for a marker(s) of the mobilizable element allows the isolation of indigenous plasmids with plasmid-mobilizing capacity as a result of comobilization (7, 36). As suggested by Top et al. (36), the application of a transfer system consisting of an Escherichia coli plasmid donor strain containing an IncQ plasmid with heavy-metal (Cd, Zn, Co)-resistance genes which are not expressed and a Ralstonia eutropha recipient strain in which they can be expressed to a mixed soil bacterial community allows for the exogenous isolation of plasmid-mobilizing elements with broad-host-range capacity (gene escape system).The objectives of this study were to gain insight into the natural conjugal gene flow in gram-negative bacterial communities in soil and rhizosphere. For that purpose, plasmids with gene-mobilizing capacity were isolated from soil bacterial populations via the Escherichia coli-Ralstonia eutropha triparental exogenous isolation system. The plasmids obtained, denoted pIPO1, pIPO2, and pIPO3, were characterized by phenotypic and molecular methods. Furthermore, the possible role of one selected plasmid, pIPO2, in in situ mobilization of an IncQ plasmid, as well as its prevalence in soil and the wheat rhizosphere, was assessed by using a plasmid-specific PCR system.  相似文献   

18.
将棒杆菌质粒pXZ10145或pNAT65的不同酶切片段装入大肠杆菌质粒pACYCl77中构建了pTSK系列重组质粒。转化棒状类细菌的实验结果确定了质粒pXZ10145上复制必需区的位置。质粒pXZ10145复制最小必需区定位在NaeI-NruI的1.2kb片段上,在这个片段上只有一个约940碱基的阅读框架。它编码一个质粒复制因子,以对位作用方式协助那些不能自我复制但复制起始区仍保持完整的pTSK质粒在棒状类细菌中复制。质粒pXZ10145复制起始区在一个NaeI-SalI的0.3kb片段上,位于已确定的复制因子编码框架中。  相似文献   

19.
Polypeptides encoded by cryptic plasmids from Neisseria gonorrhoeae   总被引:2,自引:0,他引:2  
Almost all clinical isolates of Neisseria gonorrhoeae harbor a small, phenotypically cryptic plasmid of approximately 4.1 kb. In this study several polypeptides encoded by two variants of such plasmids, one (pSB01C) having a deletion of approximately 50 bp as compared to the other (p31788C), have been identified, and the position of the genes for two of the proteins determined. The cryptic plasmids were cloned into the HindIII site of the vectors pBR322 and pACYC184. The resulting recombinant plasmids were transformed into the Escherichia coli minicell producing strain DS410 (minA, minB) and the plasmid-encoded proteins analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The pSB01C derivatives express two distinct proteins of 22 and 16 kDa and p31788C two other proteins of 24 and 18.5 kDa. Additionally, both plasmids express common proteins of 32.5, 9, and 7.5 kDa. The genes coding for the 24- and the 7.5 kDa proteins have been mapped by restriction enzyme analysis of Tn5 insertions suppressing the expression. The additional 50 bp in p31788C are localized to the coding region of the 24-kDa protein, and the 22-kDa protein of pSB01C is possibly a shortened form of the former due to the lacking 50 bp.  相似文献   

20.
The replication of the 11 kb conjugative multicopy Streptomyces plasmid pSN22 was analyzed. Mutation and complementation analyses indicated that the minimal region essential for plasmid replication was located on a 1.9 kb fragment of pSN22, containing a trans-acting element encoding a replication protein and a cis-acting sequence acting as a replication origin. Southern hybridization showed that minimal replicon plasmids accumulated much more single-stranded plasmid molecules than did wild-type pSN22. Only one strand was accumulated. A 500 by fragment from the pSN22 transfer region was identified which reduced the relative amount of single-stranded DNA, when added in the native orientation to minimal replicon plasmids. This 500 by DNA sequence may be an origin for second-strand synthesis. It had no effect on the efficiency of co-transformation, plasmid incompatibility, or stability. The results indicate that pSN22 replicates via single-stranded intermediates by a rolling circle mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号