首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Effect of Defoliation on the Carbon Balance in Dactylis glomerata   总被引:2,自引:0,他引:2  
Measurements were made of the carbon dioxide exchange of rootsand shoots, changes in soluble carbohydrates, rates of rootextension, and rate of phosphorus uptake of young plants ofDactylis glomerata (Cocksfoot) during eight days following defoliation.The results indicated that the soluble carbohydrates formedpart of a labile pool which was used in respiration and forproviding substrates for new growth. Where defoliation was notsevere, the changes in reserve carbohydrates could account fornet respiratory losses and amounts of new growth made. Wheredefoliation was severe, even high concentrations of reservecarbohydrates were inadequate and other substances, presumablyproteins, must have been remobilized for use in respirationand new growth. The content of soluble carbohydrate in the root was completelyinadequate to meet the needs of root respiration; transfer fromthe tops and/or remobilization of other substances in the rootsmust have occurred. Following a severe defoliation, root extension stopped and ratesof respiration and phosphorus uptake fell markedly. Phosphorusuptake remained at a low level for the eight days considered.After a light defoliation the roots recovered relatively rapidly. It is suggested that, following a severe defoliation, regrowthduring the first week is limited in turn first by the solublecarbohydrate content in the bases of expanding leaves, thenby the rate of photosynthesis, and then in the later Stagesby the rate of nutrient uptake sustained by the roots.  相似文献   

3.
Swards of subterranean clover (Trifolium subterraneum L.) atLAl 6 grown in N-free nutrient solution were subjected to threedefoliation treatments which removed 30, 70 and 80% of shootdry weight. Subsequent regrowth and changes in the concentrationsof carbohydrate and nitrogen in plant components were measuredat 0, 1, 5, 9 and 13 d after defoliation and compared with thosein uncut swards. The rate of shoot regrowth declined with increasing severilyof defoliation. In all defoliation treatments, growth was confinedto leaves for up to 5 d. Root growth ceased in all treatmentsfor a longer period. Reestablishment of the leaf area in severely-defoliatedswards was facilitated by the rapid opening of developing leavesand by changes in the allocation of carbon which favoured leafover branch and root, and lamina over petiole growth. Loss of carbohydrate and nitrogen from roots and branches lasting5–9 d was observed in the more severe defoliation treatments.Loss of protein (N x 6.25) exceeded that of total non-structuralcarbohydrate, and could have accounted for the nitrogen contentof new leaf during this period. Branches lost 62% of their initialcarbohydrate content compared with 25% from roots in the 80%cut swards. In contrast, roots, by virtue of their greater mass,were the principle source of mobilized nitrogen. Nitrogen accumulationceased in 80% cut swards for 9 d. However, carbohydrate levelsin the crown nodules were not severely depleted. It was concluded that partitioning of growth to lamina and themobilization of carbohydrates and nitrogen were important forrecovery from defoliation. Carbohydrates, carbon partitioning, defoliation, nitrogen, mobilization, regrowth, subterranean clover, Trifolium subterraneum L  相似文献   

4.
THOMAS  HENRY 《Annals of botany》1986,57(2):211-223
Cocksfoot (Dactylis glomerata L.). perennial ryegrass (Loliumperenne L.) and Italian ryegrass (L. multiflorum Lam.) plantswere grown on deep (75–95 cm) columns of soil in glasshousesand growth rooms with and without irrigation. The species inwhich growth declined least rapidly after water had been withheldwere those which transpired most slowly. During early establishmentin the glasshouse cocksfoot transpired least because of slowroot growth. In the growth room, when root systems were deeperand denser, perennial ryegrass transpired least because of lowleaf water conductance. Results are discussed in relation to(a) drought resistance in the three species; (b) breeding forincreased drought resistance through modifying root distributionand leaf water conductance; and (c) the use of isolated soilcolumns in water relations studies. Dactylis glomerata L., Lolium perenne L., Lolium multiflorum Lam., cocksfoot, perennial ryegrass, Italian ryegrass, transpiration, roots, leaf water conductance  相似文献   

5.
The vegetative growth of Dactylis glomerata L. in sand was studiedunder controlled light, temperature, and nutritional conditions.Plants were daily supplied with three nutrient solutions ofdifferent nitrate concentrations (10–2, 10–3 and2 x 10–4 mol I–1). For each concentration, growthobeyed an exponential law between the fourth and seventh weeksafter sowing. The time constant of the exponential was the samefor the shoot as for the root, and showed no significant variationwith nitrate concentration. The kinetic results and the strong dependence of the root: shootratio on nitrate concentration are discussed on the basis ofThornley's model. Hypothesizing that the molecular mechanismsof nitrate absorption are independent of the nitrate concentrationof the nutrient solution, we derived a relationship betweenthe root: shoot ratio and nitrate concentration. This relationshipwas found to be compatible with the experimental results. Dactylis glomerata L., vegetative phase, kinetics of growth, root: shoot equilibrium, nitrate absorption  相似文献   

6.
7.
Caloin  M. 《Annals of botany》1994,73(6):665-669
The dry matter partitioning in vegetative plants of Dactylisglomerata was studied from experiments performed in controlledenvironments. Plants were grown hydroponically in growth chambers,at two constant temperatures (17 and 25 °C). In both experimentsthe root fraction decreased regularly with time, an effect thatwas more accentuated in the higher temperature regime. In orderto explain the change in dry matter partitioning, the experimentalshoot and root growth were analysed using a carbon budget modelwhich includes shoot and root maintenance requirements. Themodel predicts a relationship between the root specific growthrate and the product of shoot specific growth rate and shootto root dry weight ratio. In the range of experimental accuracy,this relationship was found to be linear at both temperatures,which should indicate that the partitioning coefficients andthe root maintenance coefficient remained constant during vegetativegrowth. The effect of temperature on the value of these coefficientscan be specified from a linear regression analysis. Between17 and 25 °C, the root maintenance coefficient increasedby about a factor of two, whereas the partitioning coefficientsdid not vary significantly. On the basis of these results, itwas shown that the decrease in root fraction during vegetativegrowth should be mainly attributed to the decrease in net specificactivity of shoots.Copyright 1994, 1999 Academic Press Dactylis glomerata L., vegetative growth, model, partitioning, root:shoot ratio, shoot specific activity, maintenance requirements  相似文献   

8.
Although it is well established that carbon reserves contributeto shoot regrowth of leguminous forage species, little informationis available on nitrogen reserves except in Medicaqo sativaL. and Trifolium subterraneum L. In this study, reserves werelabelled with 15N to demonstrate the mobilization of endogenousnitrogen from roots and stolons to regrowing leaves and newstolons during 24 d of regrowth in white clover (Thfolium repensL.). About 55% and 70%, respectively, of the nitrogen contentsof these organs were mobilized to support the regrowth of leaves.During the first 6 d, nitrogen in regrowing leaves came mainlyfrom N reserves of organs remaining after defoliation. Afterthese first 6 d of regrowth, most of the shoot nitrogen wasderived from exogenous nitrogen taken up while the contributionof nitrogen reserves decreased. After defoliation, the buffer-solubleprotein content of roots and stolons decreased by 32% duringthe first 6 d of regrowth. To identify putative vegetative storageproteins, soluble proteins were separated using SDS-PAGE ortwo-dimensional electrophoresis. One protein of 17.3 kDa instolons and two proteins of 15 kDa in roots seemed to behaveas vegetative storage proteins. These three polypeptides, initiallyfound at high concentrations, decreased in relative abundanceto a large extent during early regrowth and then were accumulatedagain in roots and stolons once normal growth was re-established. Key words: White clover, regrowth, 15N-labelled, vegetative storage proteins, electrophoresis  相似文献   

9.
Small swards of white clover (Trifolium repens L.) cv. Haifawere grown in solution culture in a controlled environment at24 °C day/18 °C night and receiving 500 µE m-2S–1 PAR during a 14-h photoperiod. The swards were cuteither frequently (10-d regrowth periods) or infrequently (40-dregrowth) over 40 d before being cut to 2 cm in height. Halfof the swards received high levels of nitrate (2–6 mMN in solution every 2 d) after defoliation while the othersreceived none. Changes in d. wt, leaf area and growing pointnumbers were recorded over the following 10 d. CO2 exchangewas measured independently on shoots and roots and nitrogenase-linkedrespiration was estimated by measuring nodulated root respirationat 21% and 3% oxygen in the root atmosphere. There was a general pattern in all treatments consisting ofan initial d. wt loss from roots and stubble and reallocationto new leaves, followed by a period of total d. wt gain andrecovery, to a greater or lesser extent, of weight in non-photosyntheticparts. Frequently cut swards had a smaller proportion of theirshoot d. wt. removed by cutting and had a greater shoot d. wt,growing point number and leaf area at the start of the regrowthperiod. As a result of these differences, and also because ofdifferences in relative growth rates, frequently cut swardsmade more regrowth than infrequently cut. Initial photosyntheticrates were higher in frequently cut swards, although the laminaarea index was very low, and it was concluded that stolons andcut petioles made a significant contribution to carbon uptakeduring the first few d. Infrequently cut swards continued toallocate carbon to new and thinner leaves at the expense ofroots and stubble for longer than frequently cut swards andas a result achieved a similar lamina area index after 10 d. Nitrogenase-linked respiration was low in all treatments immediatelyafter cutting: frequently cut swards receiving no nitrate maintainedhigh nitrogenase activity, whereas recovery took at least 5d in infrequently cut swards. Swards which received nitrateafter cutting maintained only low rates of nitrogenase-linkedrespiration and their total nodulated root respiration overthe period was lower than those receiving no nitrogen: greaterregrowth in nitrate fed swards over the 10 d compared to N2-fixingswards was in proportion to this lower respiratory burden. White clover (Trifolium repens L.), defoliation, regrowth, nitrogen, photosynthesis, respiration, nitrogenase-activity  相似文献   

10.
CALOIN  M.; YU  O. 《Annals of botany》1982,49(5):599-607
The kinetics of growth of Dactylis glomerata L. were studiedunder controlled temperature and nutritional conditions at threelevels of irradiance (35·55 and 85 W m–s). Thedry weights of the root and shoot parts of the plants were measuredeach week between the fourth and eleventh weeks after sowing. The growth kinetics were found to be dependent on the levelof irradiance, but no significant differences in the root: totaldry weight ratio were observed. To characterize the effect of illuminance, the experimentalgrowth curves were analysed initially using the logistic model,the adequacy of which is discussed. An extension of the logisticmodel is proposed, represented by the kinetic equation dM/dt= kM, with < 1 and where M is the dry weight of the plant.It is shown that this relationship allows a distinction to bemade between two kinds of plant material according to theirfunctions in the growth process. Dactylis glomerata L., illuminance, growth curves, kinetic analyses, logistic model, shoot:root ratio, partition of assimilates  相似文献   

11.
Delaying senescence as a response to tissue losses has been reported in some studies, but there is no information about its influence in growth compensation. We performed a first test of the relative contribution of delaying senescence after defoliation to growth compensation in Dactylis glomerata L. by means of an iterative growth analysis modified to estimate tissue losses to senescent leaves. We show that Dactylis glomerata overcompensated for relative growth rate after defoliation, mainly by slowing down senescence, and to a lesser extent by increasing the newly assimilated mass allocated to leaves.  相似文献   

12.
HUME  D. E. 《Annals of botany》1991,67(6):533-541
Effects of cutting to 3 or 6 cm stubble height at frequenciesof 1, 2 or 4 weeks were investigated in young, vegetative, spacedplants of prairie grass (Bromus willdenowii Kunth), a tetraploidWesterwolds ryegrass (Lolium multiflorum Lam.) and perennialryegrass (Lolium perenne L.). Plants were grown for 8 weekson nutrient solution in a growth cabinet at day/night temperaturesof 15/10°C and in a short photoperiod. Leaf appearance,site filling and tiller numbers were all reduced by both increasedcutting frequency and a lower cutting height. The extent ofthese reductions was least in prairie grass and greatest inWesterwolds ryegrass. Relative growth rates in all species respondedin a similar manner with more frequent cutting and a lower cuttingheight. Cutting frequency had the greatest effect on growthrates, although the effect of cutting height increased withtime. Results confirm general recommendations of long intervalsbetween defoliations to achieve high yields for vegetative prairiegrass, but the relative amounts of dry matter harvested underthe different cutting regimes may be no different to that obtainedin ryegrass. Stubble height was of lesser importance in determiningyields. A typical U-shaped curve for depletion and recovery in water-solublecarbohydrates occurred after defoliation in all species, butlevels remained low at frequent cutting. Water-soluble carbohydratelevels in stubble and roots were higher in prairie grass. Regrowthat the end of the experiment was highly correlated with totalstubble and root weights (r = 0.84), while regrowth per tillershowed a good correlation with water-soluble carbohydrate content,although the response varied between species. Prairie grass, Bromus willdenowii Kunth, perennial ryegrass, Lolium perenne L., Westerwolds ryegrass, Lolium multiflorum Lam., cutting frequency, cutting height, leaf appearance, tillering, site filling, yield, regrowth, nitrogen, water-soluble carbohydrates  相似文献   

13.
A multiple regression procedure was used to evaluate allometricresponses to stand age and species population densities in monoculturesand mixtures of orchardgrass (Dactylis glomerata L., also knownas cocksfoot) and timothy (Phleum pratense L.). In each speciesthe allometry between shoot dry weight and either leaf areaor tiller number per plant was studied. Population density treatmentsaffected allometry by changing allometric exponents expressingthe ratio of relative growth rates of different plant characteristics.Allometric relationships changed as growth proceeded, and thetwo species differed in their allometric responses to treatments. Plant growth analysis, allometry, competition, Dactylis glomerata L., Phleum pratense L.  相似文献   

14.
The carbon economy of subterranean clover swards subjected tothree defoliation treatments (removal of 30, 70 and 80% of shootdry weight) was compared with that of uncut swards. Carbon dioxideexchange in shoots and roots was measured independently 0, 4,8 and 12 d after defoliation. The respiration linked to nitrogenaseactivity was estimated by comparing root respiration measuredin an atmosphere containing 3% oxygen with the respiration in21% oxygen. Net photosynthesis fell by up to 100% immediately after defoliation.There was a decline of over 60percnt; in root respiration bythe end of the first light period, composed of a rapid declineof 70% in nitrogenase-linked respiration in all treatments anda slower decline of nearly 40% in root plus nodule growth andmaintenance respiration in the more severe treatments. Recoveryof net photosynthesis to rates achieved by uncut swards occurredover 4 d in the 30% cut treatment and at least 12 d in moresevere treatments. Whilst recovery of photosynthesis was theprinciple determinant of recovery of net positive carbon balance,the early reduction in respiration facilitated this outcome.After the immediate decline in nitrogenase-linked respiration,recovery in this component of respiration appeared to be linkedwith the recovery in net photosynthesis (approximately 10% ofnet photosynthesis). Carbon budgets revealed priorities in allocation towards leafin the first 5 d and later also towards root growth in severelydefoliated swards. Root respiration comprised a large respiratorycost (up to 75% of net photosynthesis) during early regrowth. Carbon budget, defoliation, N2 fixation, photosynthesis, regrowth, respiration, subterranean clover, Trifolium subterraneum L  相似文献   

15.
CALOIN  M.; YU  O. 《Annals of botany》1984,54(1):69-76
The growth, root fraction and nitrogen content of Dactylis glomerataL. grown hydroponically in constant environmental conditions,were measured in the vegetative phase. The variation of theseparameters denotes a progressive change in the chemical compositionof the plant, which can be attributed to changing proportionsof structural material, which is immediately available for growth,and storage material. On the basis of a kinetic model of plantgrowth, a definition of the two components was proposaed, whichled us to derive a relationship between relative growth rateand nitrogen content. This relationship was found to be compatiblewith experimental data. Dactylis glomerata L., vegetative phase, kinetic model, growth rate, nitrogen content  相似文献   

16.
Ourry A  Kim TH  Boucaud J 《Plant physiology》1994,105(3):831-837
An experiment was designed to study the role of N and C reserves on regrowth of the shoots following defoliation of forage species. Starch and N accumulation in root and crown tissue of nonnodulated Medicago sativa L. were modified during regrowth by applying different levels of N and different cutting heights. Plants were obtained with similar crown and root dry weights, but having either low starch and high tissue N or high starch and low tissue N. The plants were then submitted to a second defoliation and supplied with optimal N nutrition, and N flow from reserve was quantified using pulse-chase 15N labeling. Maximum yields following the second regrowth were obtained from those plants having a high tissue N, despite their low level of nonstructural carbohydrate. When N in the roots and crown exceeded 5 mg N plant-1 at the beginning of regrowth, about 68% was translocated to regrowing shoots. Highly significant correlations were also found between the amounts of N available in roots and crown at the beginning of regrowth and (a) the amount of N that was mobilized to new tissues, (b) the amount of N taken up during the regrowth period, and (c) the final shoot yield after 24 d of regrowth. No similar correlations were found for plants that varied in their initial starch content of roots and crown. It is suggested that N reserves were used mainly during the first 10 d after defoliation, and that the resulting aerial growth during this period should be sufficient to restore N2 fixation and/or N uptake to levels equal to those prior to defoliation. These data emphasize (a) the importance of root N reserves in initiating and sustaining new shoot growth, and (b) the need for a re-evaluation of the contribution of C reserves to shoot regrowth.  相似文献   

17.
The diversity of traits plays a key role in the maximization of ecosystems' multi-functionality, but interspecific competition in defoliated swards can lead to unpredictable changes in the functional traits over the plant community. However, we hypothesize that interrupting canopy regrowth at a height corresponding to critical leaf area index (LAI), associated with moderate intensity of defoliation, can be an effective management to preserve the functional traits of contrasting growth strategy grasses cultivated as a mixture. A 2-year experiment was conceived to assess continuously several traits of three cool-season perennial grasses (Arrhenatherum elatius [exploitative], Dactylis glomerata [moderately exploitative] and Festuca arundinacea [conservative]) cultivated as single species stand or as a mixture. Dactylis glomerata was the less productive stand but no difference was observed between the mixture and the most productive monocultures. No change was observed in functional traits, whether the species were cultivated as monoculture or as a mixture. The dissimilarities over traits and, therefore, the functional identity of contrasting growth strategy grasses growing in multi-specific swards was preserved when canopy regrowth was interrupted at a height corresponding to the critical LAI associated with moderate intensity of defoliation. Since the diversity of traits maximizes ecosystem multi-functionality, our findings provide a step forward towards designing management practices that enhance ecosystems services delivered by cultivated multi-specific grasslands.  相似文献   

18.
Plants ofLolium perenneandFestuca rubrawere grown in sand culturereceiving all nutrients as a complete nutrient solution containing1.5 mMNH4NO3, and subjected to one of three defoliation treatments:undefoliated, defoliated on one occasion, or defoliated weekly.15Nlabelling was used to determine the rate of N uptake, allowingthe amount of N remobilized from storage for the growth of thetwo youngest leaves (subsequently referred to as ‘newleaves’) growing over a 14 d period after defoliationto be calculated. The total plant N uptake by both species wasreduced, compared with undefoliated plants, by both a singleand repeated defoliation, although neither caused complete inhibitionof uptake. Regularly defoliatedL. perennehad a greater reductionin root mass, concomitant with a greater increase in N uptakeper g root than did regularly defoliatedF. rubra. In both species,the amount of N derived from uptake recovered in the new leaveswas unaffected by the frequency of defoliation. BothL. perenneandF.rubramobilized nitrogen to the new leaves after a single defoliation,mobilization being sufficient to supply 50 and 41%, respectively,of the total nitrogen requirement. In regularly defoliated plants,no significant nitrogen was mobilized to the new leaves inL.perenne, and only a small amount was mobilized inF. rubra. Plantsachieved greater leaf regrowth when only defoliated once. Weconclude that increasing the frequency of defoliation of bothL.perenneandF. rubrahad little effect on the uptake of nitrogenby roots which was subsequently supplied to new leaves, butdepleted their capacity for nitrogen remobilization, resultingin a reduction in the rate of growth of new leaves. Lolium perenne; Festuca rubra; defoliation frequency; mobilization; root uptake; nitrogen  相似文献   

19.
JARVIS  S. C. 《Annals of botany》1982,49(2):199-206
The absorption and distribution of sodium were examined in threegrasses grown in flowing solution culture with different suppliesof potassium. There were marked differences between the speciesin the rate of absorption by their roots, timothy absorbingat a much slower rate than either ryegrass or cocksfoot. Inall species, the rate of Na absorption was greatest when therewas a maintained supply of K and/or when the K contents of theplants were high. Transport of Na from roots to shoots of timothywas restricted; it was less restricted in the other speciesand large proportions of the Na moved from roots to shoots whenK was not supplied to the plants. Sodium transported from theroots accumulated in old leaves and not in the younger leaves.When K was no longer supplied, the growth of ryegrass was maintainedin the plants previously grown with Na plus K; Na supplied insteadof K, however, did not maintain growth. Cocksfoot grown withNa grew less well than when grown without Na when plants wereno longer supplied with K; the growth of timothy was unaffectedby Na. Dactylis glomerata L., Lolium perenne L., Phleum pratense L., cocksfoot, ryegrass, timothy, absorption of ions, distribution of ions, potassium, sodium  相似文献   

20.
In two growth cabinet experiments the leaf extension rate (LER)was studied under a 14 h photoperiod followed by prolonged darkness,in tillers of the perennial temperate pasture grasses Phalaristuberosa L. cv. Sirosa and Dactylis glomerata L. cv. Currie.Levels of soluble non-structural carbohydrates and total  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号