首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A process for maximizing the volumetric productivity of recombinant ovine growth hormone (r-oGH) expressed in Escherichia coli during high cell density fermentation process has been devised. Kinetics of r-oGH expression as inclusion bodies and its effect on specific growth rates of E. coli cells were monitored during batch fermentation process. It was observed that during r-oGH expression in E. coli, the specific growth rate of the culture became an intrinsic property of the cells which reduced in a programmed manner upon induction. Nutrient feeding during protein expression phase of the fed-batch process was designed according to the reduction in specific growth rate of the culture. By feeding yeast extract along with glucose during fed-batch operation, high cell growth with very little accumulation of acetic acid was observed. Use of yeast extract helped in maintaining high specific cellular protein yield which resulted in high volumetric productivity of r-oGH. In 16 h of fed-batch fermentation, 3.2 g l-1 of r-oGH were produced at a cell OD of 124. This is the highest concentration of r-oGH reported to date using E. coli expression system. The volumetric productivity of r-oGH was 0.2 g l-1 h-1, which is also the highest value reported for any therapeutic protein using IPTG inducible expression system in a single stage fed-batch process.  相似文献   

2.
A fermentation process in Escherichia coli for production of supercoiled plasmid DNA for use as a DNA vaccine was developed using an automated feed-back control nutrient feeding strategy based on dissolved oxygen (DO) and pH. The process was further automated through a computer-aided data processing system to regulate the cell growth rate by controlling interactively both the nutrient feed rate and agitation speed based on DO. The process increased the total yield of the plasmid DNA by approximately 10-fold as compared to a manual fed-batch culture. The final cell yield from the automated process reached 60 g L−1 of dry cell weight (OD600 = 120) within 24 h. A plasmid DNA yield of 100 mg L−1 (1.7 mg g−1 cell weight) was achieved by using an alkaline cell lysis method. Plasmid yield was confirmed using High Performance Liquid Chromatography (HPLC) analysis. Because cells had been grown under carbon-limiting conditions in the automated process, acetic acid production was minimal (below 0.01 g L−1) throughout the fed-batch stage. In contrast, in the manual process, an acid accumulation rate as high as 0.36 g L−1 was observed, presumably due to the high nutrient feed rates used to maintain a maximum growth rate. The manual fed-batch process produced a low cell density averaging 10–12 g L−1 (OD600 = 25–30) and plasmid yields of 5–8 mg L−1 (approximately 0.7 mg g−1 cells). The improved plasmid DNA yields in the DO- and pH-based feed-back controlled process were assumed to be a result of a combination of increased cell density, reduced growth rate (μ) from 0.69 h−1 to 0.13 h−1 and the carbon/nitrogen limitation in the fed-batch stage. The DO- and pH-based feed-back control, fed-batch process has proven itself to be advantageous in regulating cell growth rate to achieve both high cell density and plasmid yield without having to use pure oxygen. The process was reproducible in triplicate fermentations at both 7-L and 80-L scales. Received 22 March 1996/ Accepted in revised form 20 September 1996  相似文献   

3.
AIMS: The objective of this study was to design an economically feasible process for endoglucanase (EG) production. METHODS AND RESULTS: Trichoderma pseudokoingii S-38 EG synthesis was studied. Initially, either glucose at 2.5, 5 or 10 g l-1, or cellulose powder (CF11) at 5 g l-1 was used as the sole carbon source. The results showed that enzyme synthesis and biomass formation were closely correlated, and both were affected by the carbon source. To improve EG volumetric product efficiency, a new technique was developed. Glucose and CF11 (2.5 and 5 g l-1, respectively) were used as initial carbon source, and glucose was added at 2.5 g l-1 day-1. EG activity, volumetric and specific EG productivities were 6.17 IU l-1, 53 IU l-1 h-1 and 114.3 IU (g cell protein)-1 h-1, respectively. Batch production in a 2-l laboratory fermenter confirmed the advantage of the technique. The product contained 10.86 IU ml-1 EG activity in 88 h. The volumetric and specific EG productivities were 123.4 IU l-1 h-1 and 177.8 IU (g cell protein)-1 h-1, respectively. CONCLUSIONS: These results suggest that optimization of the ratio of glucose to CF11 for balancing the induction and growth rate in the production of EG may lead to technical and economical benefits. SIGNIFICANCE AND IMPACT OF THE STUDY: A new technique was developed for the production of EG which improves both the volumetric product efficiency and the specific activity.  相似文献   

4.
A Panax notoginseng cell culture was successfully scaled up from shake flask to 1.0-L bubble column reactor and concentric-tube airlift reactor. High-density bioreactor batch cultivation was carried out using a modified MS medium. The maximum cell density in batch cultures reached 20.1, 21.0 and 24.1 g/L in the shake flask, bubble column and airlift reactors, respectively, and their corresponding biomass productivity was 950, 1140 and 1350 mg/(L x d) for each. The productivity of ginseng saponin was 70, 96 and 99 mg/(L x d) in the flask, bubble column and airlift reactors, respectively; and the polysaccharide productivity reached 104, 119 and 151 mg/(L x d) for each. Furthermore, a fed-batch cultivation strategy was developed on the basis of specific oxygen uptake rate (SOUR), i.e., sucrose feeding before a sharp decrease of SOUR, and the highest cell density of 29.7 g/L was successfully achieved in the airlift bioreactor on day 17 with a very high biomass productivity of 1520 mg/(L x d). The concentrations of ginseng saponin and polysaccharide reached about 2.1 and 3.0 g/L, respectively, and their productivity was 106 (saponin) and 158 mg/(L x d) (polysaccharide). This work successfully demonstrated the high-density bioreactor cultivation of P. notoginseng cells in pneumatically agitated bioreactors and the reproduction of the shake flask culture results in bioreactors. The cell density, biomass productivity, production titer and productivity of both ginseng saponin and polysaccharide obtained here were the highest that have been reported on a reactor scale for all the ginseng species.  相似文献   

5.
The processes for production of indole alkaloids in shake flask suspension cultures of Catharanthus roseus cells using Zenk's alkaloid production medium (APM) were evaluated. The 1-stage process consisted of inoculating APM and incubating for 15 days. The 2-stage process involved 6 d of cultivation in growth medium followed by 15 d of incubation in APM. Growth, main nutrient consumption and alkaloid production were monitored. Both culture processes produced approximately 20 g dw per 1 biomass. However, 2-stage cultures yielded an inorganic nutrient richer and more active plant cell biomass, richer in inorganic nutrients, as indicated by higher (greater than 70%) nutrient availability and consumption. Total and individual indole alkaloid production were 10 times higher (740 mg l-1 and 25 to 4000 micrograms per g dw, respectively) for 2-stage than for 1-stage cultures. For both processes, highest alkaloid productivity coincided with complete extracellular consumption of major inorganic nutrients, especially nitrate, by the cells. Complete carbohydrate consumption in 2-stage cultures resulted in a 40% decline in production. Small but significant (approximately 10%) product release was observed for both culture regimes, which seemed not to be related to cell lysis.  相似文献   

6.
Fermentation studies were performed on an Escherichia coli culture that carries a recombinant plasmid composed of an ampicillin-resistant gene, a temperature-regulated pL promoter, and a porcine pituitary cDNA sequence coding for growth hormone. The objective was to achieve high cell density while maintaining the specific expression level of recombinant porcine growth hormone (r-pGH) observed in shake flasks. At a specific expression level of 20% of total cell protein, the cell density of a glucose-limited fed-batch process reached 38 units of OD600 in 14 h, compared to flask cultivation, which resulted in only 1.4 units of OD600 in the same period. The observed critical fermentation conditions for maximal expression included (1) limiting glucose concentration below 1 g l-1 throughout the fed-batch growth and induction phases, (2) keeping postinduction temperature at 42 degrees C for 5-7 h, and (3) maintaining a postinduction growth rate around 0.17-0.21 h-1.  相似文献   

7.
Human interferon-gamma (hIFN-gamma) was expressed in Escherichia coli BL21(DE3) under the control of the T7 promoter. Glucose was used as the sole source of carbon and energy with simple exponential feeding rate in fed-batch process. Cell density of recombinant E. coli was reached to 100 g dry wt l(-1) under both constant (0.12 h(-1)) and variable (0.12-0.52 h(-1)) specific growth rates. In the variable specific growth rate fed-batch process, plasmid stability and specific yield of rhIFN-gamma were greater than constant specific growth rate fed-batch process. The final specific yield and overall productivity of rhIFN-gamma were 0.35 +/- 0.02 g rhIFN-gamma g(-1) dry cell wt and 0.9 +/- 0.05 g rhIFN-gamma l(-1) h(-1) in the variable specific growth rate fed-batch process, respectively.  相似文献   

8.
A recombinant plasmid containing the complete lacZ gene downstream of the T7 promoter was used to transform Escherichia coli containing another plasmid which had the T7 RNA polymerase gene under the control of heat inducible lambda PL promoter. This recombinant E. coli containing the two plasmids was studied in order to enhance beta-galactosidase expression. The heat shock time which effectively regulates the T7 RNA polymerase was optimized and best expression of beta-galactosidase was obtained with 2 min heat shock. Substrate feeding increased the duration of log phase and allowed induction at a higher cell density without affecting the specific activity. A high cell density (7 g l-1) and high specific activity (approximately 20,000 U) were achieved which effectively increased the product concentration 18-fold.  相似文献   

9.
A single-stage fed-batch bioprocess for the production of a recombinant protein beta-galactosidase, by E. coli has been developed. The XL1-blue strain of E. coli which harbors a multi-number foreign plasmid PT was cultured in a reformulated medium. Critical medium components were selected and their respective concentrations were optimized with the Orthogonal Table method. An exponential substrate feeding schedule was used to maintain optimum conditions. Inhibition of growth and protein expression caused by excessive concentrations of glucose and acetate was investigated and subsequently minimized with an incremental nutrient feeding schedule which limited the specific growth rate of a culture. The program necessary to facilitate the control of substrate addition is fully described. This program has been used with a 2.5 l bioreactor and a commercially available software package for optimization without on-line or off-line measurement of optical density (OD), CO2, glucose or acetate. The optimized fed-batch process limited the acetate concentration to less than 20 mM; maintained an exponential growth phase for 50 h; and produced a cell density of 51 g l-1 dry cell weight (DCW) or 154 OD600 with a beta-galactosidase activity of 990 U ml-1.  相似文献   

10.
悬浮培养HEK-293 N3S细胞生产重组腺病毒Ad-GFP的实验研究   总被引:1,自引:0,他引:1  
利用5L生物反应器悬浮培养HEK-293N3S细胞生产携带绿色荧光蛋白基因的重组腺病毒(recombinant adenovirus-greenfluorescent protein,Ad-GFP),为规模化生产腺病毒基因药物建立一种稳定可行的生产工艺。复苏的种子细胞进行逐级放大最后接入5L搅拌式生物反应器中,采用含5%胎牛血清(FBS)的DMEM/F12培基灌流培养293N3S细胞,当细胞密度达到(2~4)×106个/mL时感染Ad-GFP,48h后收获细胞,经两步氯化铯超速离心获得纯化的Ad-GFP。采用紫外分光光度计比色法和高压液相色谱法(HPLC)测定病毒颗粒数和纯度,采用组织培养半数感染剂量(TCID50)法检测腺病毒的感染滴度。连续培养10~12d,细胞密度可达到(2~4)×106个/mL左右,纯化的Ad-GFP感染滴度和颗粒数分别为1.0×1011IU/mL和1.68×1012VP/mL,比活性为6.0%,A260/A280比值为1.33,产品纯度达到99.2%。建立了5L生物反应器悬浮培养293N3S细胞生产重组腺病毒Ad-GFP的生产工艺,对携带其他基因的重组腺病毒药物生产具有一定的指导意义。  相似文献   

11.
One of the major limitations in the production of adenoviral vectors is the reduction in cell-specific productivity observed for increasing cell density at infection in batch cultures. This observation strongly suggests some nutrient depletion and/or metabolite inhibition in the media. These limitations have been partially overcome through other feeding strategies, such as fed-batch and sequential batch operations. To improve these results, we evaluated perfusion as a strategy to increase the volumetric productivity of HEK-293 cell cultures, by allowing productive infection at higher cell densities. An acoustic cell separator was employed in consideration of the increased shear sensitivity of the cells during the infection phase. The effects of perfusion rate and cell density at infection on the production of a recombinant adenovirus expressing the GFP were investigated. The perfusion mode allowed successful infection at cell densities in the range of 2.4-3 x 10(6) cell/mL, while maintaining a similar cell specific productivity (17,900 +/- 2400 VP/cell) to that of a batch infected at a low cell density (5 x 10(5) cell/mL). The highest virus concentrations (4.1 +/- 0.6 x 10(10) VP/mL) were attained for a feed rate of 2 vol/d and constituted a fivefold increase compared to a batch with medium replacement. Rapid assessment of the infection status was achieved through the use of on-line monitoring of respiration, fluorescence, and biovolume. Analysis of the kinetics of nutrient consumption and metabolite production revealed that a reduction in specific productivity is correlated with reduced metabolic activity.  相似文献   

12.
基于r21昆虫细胞在浮过程中所表现出的生长代谢特征,提出以培养液中残糖浓度作为控制参数,并利用限制性基质(葡萄糖和蛋白水解物)的间歇补加技术调控细胞生长的方案。实际控制表明:与批培养相比,S1f21细胞在两种具代表性的昆虫水解物)的间歇补加调控细胞生长的方案。实际控制表明:与批培养相比,Sf21细胞在两种具代表性的昆虫细胞培养基(IPL-41和TC-100)中的生长期和稳定期部都到有效的延长。TC  相似文献   

13.
The initial moisture content, cultivation time, inoculum size and concentration of basal medium were optimized in solid state fermentation (SSF) for the production of xylanase by an Aspergillus niger mutant using statistical experimental designs. The cultivation time and concentration of basal medium were the most important factors affecting xylanase activity. An inoculum size of 5 x 10(5) spores/g, initial moisture content of 65%, cultivation time of 5 days and 10 times concentration of basal medium containing 50 times concentration of corn steep liquor were optimum for xylanase production in SSF. Under the optimized conditions, the activity and productivity of xylanase obtained after 5 days of fermentation were 5,071 IU/g of rice straw and 14,790 IU l(-1) h(-1), respectively. The xylanase activity predicted by a polynomial model was 5,484 IU/g of rice straw.  相似文献   

14.
The development of insect cells expressing recombinant proteins in a stable continuous manner is an attractive alternative to the BEV system for recombinant protein production. High cell density fed batch and continuous perfusion processes can be designed to maximize the productivity of stably transformed cells. A cell line (Sf-9SEAP) expressing high levels of the reporter protein SEAP stably was obtained by lipid-mediated transfection of Sf-9 insect cells and further selection and screening. The expression of the Sf-9SEAP cells was compared with the BEVS system. It was observed that, the yield obtained in BEVS was similar to the batch Sf-9SEAP at 8 and 7 IU/mL, respectively. The productivity of this foreign gene product with the stable cells was enhanced by bioprocess intensification employing the fed-batch and perfusion modes of culture to increase the cell density in culture. The fed batch process yielded a maximum cell density of 28 x 10(6) cells/mL and 12 IU/mL of SEAP. Further improvements in the productivity could be made using the perfusion process, which demonstrated a stable production rate for extended periods of time. The process was maintained for 43 days, with a steady-state cell density of 17-20 x 10(6) cells/mL and 7 IU/mL SEAP. The total yield obtained in the perfusion process (394 IU) was approximately 22 and 8 times higher than that obtained in a batch (17.6 IU) and fed batch (46.1 IU) process, respectively.  相似文献   

15.
High cell density cultivation was investigated for L-phenylalanine (L-Phe) production by an L-tyrosine (L-Tyr) auxotrophic Escherichia coli WSH-BR165 (pAPB03). Dual exponential feeding of L-Tyr and glucose was adopted to achieve high cell density cultivation. The control was completed without dual feeding. The processes where dual feeding and induction were commenced together and those where induction began after dual feeding were studied and compared. The results indicated that the former dual feeding mode was most favorable for enhanced L-Phe production. With an optimal specific growth rate of 0.09/h during the dual exponential feeding period, the maximum dry cell weight reached 43.16 g/L (3.04 times that of the control) with a final L-Phe titer of 44.53 g/L (1.06 times that of the control) and an L-Phe productivity of 1.484 g/L/h (1.69 times that of the control). High cell density cultivation via the feeding of L-Tyr and glucose exponentially after the induction point proved to be an efficient approach to enhance L-Phe production.  相似文献   

16.
This paper shows that differences in growth behavior of Escherichia coli strain HB101 and strain HB101[pGEc47] can be related to yeast extract-enriched medium rather than plasmid properties. An optimal medium for growth of E. coli HB101[pGEc47] was designed based on the individual yield coefficients for specific medium components (NH4+ 6 g g-1, PO43- 14 g g-1, SO42- 50 g g-1). The yield coefficient for L-leucine depends on the glucose content of the medium (20 g g-1 for 3% glucose, 40 g g-1 for 1% glucose) and the yield coefficient for L-proline depends on the cultivation mode (20 g g-1 for batch cultivation, 44 g g-1 for continuous cultivation). Growth on defined medium after medium optimization is as rapid as on complex medium (0. 42-0.45 h-1). The critical dilution rate (DR) in the defined medium above which undesired production of acetic acid occurs is in the range of 0.23-0.26 h-1.  相似文献   

17.
为进行高密度发酵并实现外源基因的高表达,在表型为MutS的重组毕赤酵母(Pichia pastoris)表达人血管生长抑制素的诱导阶段,采用了甘油甲醇混合补料的培养方式。以溶氧水平作为甘油代谢指针来控制甘油限制性流加既可维持一定菌体生长,又不会发生发酵液中残余甘油及有害代谢产物(乙醇)阻遏蛋白表达。当表达阶段的菌体平均比生长速率控制于0.012h-1,菌体浓度达150 g/L,血管生长抑制素浓度最高达到108 mg/L,血管生长抑制素的平均比生产速率为0.02 mg/(g·h),菌体关于甘油的表观得率为0.69 g/g,菌体关于甲醇的表观得率为0.93g/g,较没有采用甘油限制性流加时都有所提高。  相似文献   

18.
Significant improvement in cell growth and protein production has been achieved in Sf-9 insect cell cultures using pulse additions of multicomponent nutrient feed concentrates (Bédard et al., 1994; Chan et al., 1998). The present work focuses on investigating an alternative feeding strategy wherein the nutrients are fed in a semi continuous manner. Fed batch culture experiments were carried out to compare the two different feeding strategies, pulse and semi continuous and a process developed to achieve a cell density of 5.2 x 10(7) cells/mL of Sf-9 cells in a 3.5 L bioreactor. Production of recombinant protein beta-galactosidase was carried out by infecting the cells with baculovirus at a MOI of 10 at cell densities of 17 x 10(6)cells/mL. Specific productivity could be maintained at cell densities as high as 14 x 10(6) cells/mL. The results presented indicate that the feeding method can provide significant improvements in the performance with a reduction in the amount of total nutrients added. On-line monitoring of the culture using the capacitance probe showed that the capacitance probe can be used successfully to monitor the biomass and infection process even at higher cell densities.  相似文献   

19.
The impact of different cultivation-infection strategies on the productivity of baculovirus-infected BTI-Tn-5B1-4 (High Five) cells was investigated. Using beta-trace protein as the recombinant glycoprotein, the effects of multiplicity of infection (MOI) and time of infection (TOI) were studied on growth after infection as well as the degree of infection and recombinant protein productivity in batch culture. The highest productivities were found when infecting Tn5 cells at early exponential growth phase (EGP) (low cell density) using a high MOI. To increase the productive cell density of Tn5 cells after beta-trace-baculovirus infection, we performed studies infecting cells in the range of 1 to 5 x 10(6) cells/mL in fresh medium. Although the protein production was increased twofold, a strong negative cell density effect was still observed when maximal productive cell density exceeded 1 x 10(6) cells/mL. To verify whether the changing cell environment of the batch experiments was responsible for the decrease in protein productivity at increasing cell density at infection, several perfusion experiments were designed by infecting Tn5 cells at cell densities over 2 x 10(6) cells/mL under more steady-state conditions. The use of this experimental setup enabled successful infections at high cell densities with volumetric productivities of up to 1.2 g L(-1) day(-1) of beta-trace protein, which is very high for a glycoprotein expressed with the baculovirus expression vector system (BEVS). The cell specific protein productivity observed after infections at higher cell densities in perfusion mode was the same as in batch experiments at low cell concentrations, which clearly demonstrates that the cell density effect could be completely overcome with perfusion cultivation.  相似文献   

20.
A microorganism with the ability to form L-tryptophan from D,L-5-(3-indolyl-methyl)hydantoin (D,L-5-IMH) was isolated and identified as Arthrobacter sp. (DSM 3747). After isolation of a mutant with high tryptophan production activity but low tryptophan degradation, cultural conditions were optimized to achieve high amounts of biomass with good specific activities concerning the enzymatic hydantoin-cleaving reactions. The ability of the microorganism to perform these bioconversions was found to be inducible by D,L-5-IMH as well as to be dependent on the presence of Mn2+. The highest specific D,L-5-IMH-cleaving activity of the cells was observed in the exponential phase of growth. The addition of yeast extract to the mineral salts medium was found to be essential for obtaining biomass concentrations of about 25 g l-1 cell dry mass by bioreactor cultivations. In order to obtain a constantly high growth rate, feeding of the C-source was pO2-controlled. The inducer D,L-5-IMH had to be continuously fed to prevent a decline of the L-tryptophan-forming enzyme activities, because it was subjected to degradation with the enzymes induced and higher concentrations of D,L-5-IMH aggravated the growth significantly. The synthesis of the enzymes was also inducible, when inducer and Mn2+ were not added until the late growth phase. Using this process, the consumption of D,L-5-IMH was reduced remarkably. So, under these conditions biomass concentrations of 25 g l-1 cell dry weight with a specific enzymatic activity of 0.20 mmol g-1 h-1 (tryptophan per dry mass per time) could be obtained within 13 h. Using 1 g l-1 of the chemically modified inducer D,L-5-(3-indolylmethyl)-3-N-methylhydantoin, which was not degradable by the microorganisms, a biomass concentration of 28 g l-1 cell dry weight with a specific activity of 0.34 mmol g-1 h-1 (tryptophan per dry mass per time) could be obtained within 28 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号