首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we propose a new far-field nanofocusing lens with elongated depth of focus (DOF) under near-infrared (NIR) wavelength. The surface plasmons can be excited by using the hybrid metal–insulator–metal (MIM) subwavelength structure under the NIR wavelength. The constructive interference of surface plasmons launched by the subwavelength MIM structure can form a nanoscale focus that is modulated by the novel metal grating from the near field to the far field. The numerical simulations demonstrated that a nanoscale focal spot (in plane focal area 0.177λ 2) with elongated DOF (3.358λ) and long focal length (5.084λ) can be realized with reasonably designing parameters of the lens. By controlling the positions of the inner radii of each slit ring and the grating width, the focal length, focal spot, and DOF can be tuned easily. This design method, which can obtain the nanoscale focal spot and micron DOF in far field under NIR illumination, paved the road for utilizing the NIR plasmonic lens in superresolution optical microscopic imaging, optical trapping, biosensing, and complex wavefront/beam shaper.  相似文献   

2.
Conventionally, plasmonic lenses introduce a phase delay distribution across their surfaces by modulating the dimensions of nanostructures within a metal film. However, there is very limited modulation of the phase delay due to the small dependence of the mode propagation constant on the structure dimensions. In this paper, a novel design of plasmonic zone plate lenses (PZPL) with both slit width and refractive index modulation is proposed to enable integrating more slits in a fixed lens aperture with the extended phase delay range and, therefore, greatly enhance the performance of the devices. More than three-time enhancement of the light intensity at the focus is achieved compared to the structure with only slit width modulation. Like a conventional immersion system, a PZPL embedded in a dielectric is found to have a further improved focusing performance, where light is focused down to a 0.44λ spot using a PZPL with an aperture of 12λ and a focal length of 6λ. Dispersive light-focusing behaviour is also analysed and the modulation of the focal length by colour has a potential application in stacked image sensors and multi-dimensional optical data storage.  相似文献   

3.
A 1D plasmonic zone plate lens (PZPL) consisting of nano-slits within a metal film introduces a phase delay distribution across the planar device surface by a modulation of the slit widths and positions to achieve light focusing. Using the finite-difference time-domain method, the number of zones is found to be a crucial factor for a well-controlled focal length, i.e. at least three zones are necessary for a PZPL exhibiting a focal length in agreement with the design. This conclusion is confirmed by confocal scanning optical microscopy on PZPLs patterned in an aluminium film. In addition, subwavelength light focusing is demonstrated both theoretically and experimentally in a PZPL. A larger PZPL, i.e. more zones, shows a higher resolution. A full full-width half-maximum of 0.37λ in the focal plane is shown theoretically in a PZPL with seven zones. A comparison between the PZPL and the plasmonic Fresnel zone plate shows that PZPLs have a higher contrast at the focus.  相似文献   

4.
In this paper, we propose a novel plasmonic lens design consisting of an annular slit and concentric grooves. The simulation results show that under radially polarized illumination, a super-resolution long depth of focus (DOF) spot can be achieved in optical meso-field due to the constructive interference of scattered light by the concentric grooves. We also analyze the influence of depth-tuned annular grooves on focusing performance, including focal length, DOF, and full-width half-maximum. Moreover, focusing efficiency can be enhanced (~350 %) by introducing a circular metallic grating which surrounds the annular slit. This plasmonic lens has potential applications in nano-imaging and nano-photolithography.  相似文献   

5.
The focusing effect of the plasmonic nanolens is studied systematically. The influence of different construction parameters including the size of the central hole, the ring width of the surrounding concentric grating, the thickness of the metal film, and the distance of the central hole to grating has been simulated by rigorous finite difference time domain method and analyzed. It is found that the intensity of the central nano-spot is linearly proportional to the size of the central hole and inversely linearly proportional to the thickness of the metal film. In addition, the intensity of the lobes can be suppressed effectively by reducing the ring width down to a quarter of plasmon wavelength to achieve a better focusing effect. The influence of the distance of central hole to grating is a little bit complex, but generally, the intensity for the distance of (2n − 1)/2 plasmon wavelength is larger than the case of the distance of nλSP. The simulation results can be a general guide for the design of plasmonic nanolenses.  相似文献   

6.
We present theoretical studies of three regions for plasmonic focusing, which are surface plasmon-dominating, Fresnel, and Fraunhoffer regions. The boundaries of the three regions are defined and the physical behaviors of plasmonic lenses in terms of focal length and focus size in these regions are investigated. A plasmonic lens that renders a subdiffraction-limit focus in the Fresnel region is presented and the lens performance with respect to the design parameters is studied by using finite-difference time-domain simulations. This work can serve as a basis for understanding plasmonic-focusing phenomenon and designing plasmonic lenses for various applications.  相似文献   

7.
We propose a plasmonic wavelength-launched Fresnel zone plate structure for subwavelength focusing. The plasmonic structure consists of a central circular groove surrounded by 12 transparent and opaque zones. All the zones with widths smaller than one half of the incident wavelength are used to enhance the field of evanescent waves in the transmission. Based on the finite-difference time-domain analysis, a focus spot with a full-width at half-maximum of 270 nm (= 0.4λ in ) can be achieved, accompanied by a largely reduced depolarization effect. The sharp waistline indicates that the surface waves are largely converged in the region of focus.  相似文献   

8.
An Integrated Multistage Nanofocusing System   总被引:1,自引:0,他引:1  
We demonstrate an integrated multistage nanofocusing system which combines a conventional objective, a surface plasmonic lens, and a center-positioned rounded-tip cone nanoparticle. The surface plasmonic lens, fabricated on the cover glass which has been mounted on the biological microscopic objective, is composed of several concentric annular slits for exciting propagating surface plasmonic wave. The rounded-tip cone nanoparticle is for further generating non-propagating localized surface plasmonic wave. It is revealed that the enhancement of the nanoscale optical field can be improved by carefully choosing the appropriate numerical aperture of the objective to match the specific nanostructure of the surface plasmonic lens and choosing the relatively big cone angle of the nanoparticle. The investigation shows that a highly confined electric field as small as 20 nm and an enhancement factor of 5 orders of magnitude can be achieved through this multistage nanofocusing system when the system is illuminated with a uniform radially polarized beam.  相似文献   

9.
The key challenge of the plasmonic waveguide is to achieve simultaneously both the long propagation length and high confinement. The hybrid dielectric-loaded plasmonic waveguide consists of a SiO2 stripe sandwiched between a Si-nanowire and a silver film and thus promises as a best candidate to overcome this challenge. We propose to exploit this unique property of this structure to design different high-efficient silicon-based plasmonic components including waveguide, power splitter, and wavelength-selective ring resonator. As a result, the proposed power splitter with a waveguide cross section (λ 2/60) and a strong mode confinement area (~λ 2/240) features a low power transmission loss (<0.4 dB) at the optimal arm length of 4 μm with respect to different separation distances of output arms. Moreover, we also demonstrate that a plasmonic ring resonator with a compact ring radius of 2 μm may achieve high optical performance such as high-extinction ratio of 30 dB, large free spectral range of 67 nm, and small bandwidth of 0.6 nm. These superior performances make them promising building blocks for integrated nanophotonic circuits.  相似文献   

10.
An elliptical nano-pinhole structure-based plasmonic lens was designed and investigated experimentally by means of focused ion beam nanofabrication, atomic force microscope imaging, and scanning near-field optical microscope (NSOM). Two scan modes, tip scan and sample scan, were employed, respectively, in our NSOM measurements. Both the scan modes have their characteristics while probing the plasmonic lenses. Our experimental results demonstrated that the lens can realize subwavelength focusing with elongated depth of focus. This type of lens can be used in micro-systems such as micro-opto-electrical–mechanical systems for biosensing, subwavelength imaging, and data storage.  相似文献   

11.
A compact plasmonic lens is proposed in this paper. This plasmonic lens consists of rectangular holes etched on the silver film and arranged on one straight line and possesses the characteristics of short focus length, ultrathin thickness, and strong focus ability. The theoretical design for the plasmonic lens abides by the constructive interference theorem, and the surface plasmon polaritons excited by the holes with linearly polarized light illumination focuses effectively. The plasmonic lenses with single and double focus spots are provided, and the simulation experiment gives the powerful verification. The distinct structure feature and the excellent focusing characteristic of this plasmonic lens are benefit for its applications in optical integration.  相似文献   

12.
In this paper, we investigate the focusing properties of a plasmonic lens with multiple-turn spiral nano-structures, and analyze its field enhancement effect based on the phase matching theory and finite-difference time-domain simulation. The simulation result demonstrates that a left-hand spiral plasmonic lens can concentrate an incident right-hand circular polarization light into a focal spot with a high focal depth. The intensity of the focal spot could be controlled by altering the number of turns, the radius and the width of the spiral slot. And the focal spot is smaller and has a higher intensity compared to the incident linearly polarized light. This design can also eliminate the requirement of centering the incident beam to the plasmonic lens, making it possible to be used in plasmonic lens array, optical data storage, detection, and other applications.  相似文献   

13.
In this paper, we consider a circular central aperture surrounded with annular depth-tuned grooves and investigate the beaming effect of the structure under illumination of a circularly polarized (CP) plane wave. As a CP plane wave is equivalent to the superposition of two linearly polarized plane waves (TM and TE) with a phase difference of π/2, the superposition of the electric field intensity, ( | Ex |2 + | Ey |2 ) \left( {{{\left| {E_x} \right|}^2} + {{\left| {E_y} \right|}^2}} \right) , is observed in the transmission field. In addition, two plasmonic modes are found at the resonant wavelengths λ 1 and λ 2 with each consisting of multiple wavelengths. At the wavelength λ 1 = 420 nm, the significant near-field collimation is formed along the direction z, having a long propagation distance up to 1.75 μm (≈4λ) away from the exit plane of the new plasmonic lens.  相似文献   

14.

Although spiral plasmonic lens has been proposed as circular polarization analyzer, there is no such plasmonic nanostructure available for linear polarization. In the current work, we have designed nano-corral slits (NCS) plasmonic lens, which focuses the x- and y-polarized light into spatially distinguished plasmonic fields. We have calculated analytically and numerically the electric field intensity and phase of the emission from nano-corral slits plasmonic lens with different pitch lengths under various polarizations of the illumination. It has been shown that one can control the wave front of the output beam of these plasmonic lenses by manipulating the illumination of both circular and linear polarization. Our theoretical study in correlation with FDTD simulation has shown that NCS plasmonic lens with pitch length equal to λspp produces scalar vortex beam having optical complex fields with helical wave front and optical singularity at the center under circular polarization of light. When NCS lens (pitch = λspp) is illuminated with linearly polarized light, it exhibits binary distribution of phase with same electric field intensity around the center. However, with pitch length of 0.5λspp, NCS shows linear dichroism under linearly polarized illumination unlike spiral plasmonic lens (SPL) eliminating the use of circularly polarized light. Optical complex fields produced by these NCS plasmonic lenses may find applications for faster quantum computing, data storage, and telecommunications.

  相似文献   

15.
Arachnid strain sensitive slit sensilla are elongated openings in the cuticle with aspect ratios (slit length l / slit width b) of up to 100. Planar Finite Element (FE) models are used to calculate the relative slit face displacements, D c, at the centers of single slits and of arrangements of mechanically interacting slits under uni-axial compressive far-field loads. Our main objective is to quantitatively study the role of the following geometrical parameters in stimulus transformation: aspect ratio, slit shape, geometry of the slits‘ centerlines, load direction, lateral distance S, longitudinal shift λ, and difference in slit length Δl between neighboring slits. Slit face displacements are primarily sensitive to slit length and load direction but little affected by aspect ratios between 20 and 100. In stacks of five parallel slits at lateral distances typical of lyriform organs (S = 0.03 l) the longitudinal shift λ substantially influences slit compression. A change of λ from 0 to 0.85 l causes changes of up to 420% in D c. Even minor morphological variations in the arrangements can substantially influence the stimulus transformation. The site of transduction in real slit sensilla does not always coincide with the position of maximum slit compression predicted by simplified models. An erratum to this article can be found at  相似文献   

16.
In this paper, we propose a method to tailor the nanofocusing of plasmons on graphene plasmonic lens, which is composed of graphene and circular dielectric gratings of magneto-optical material beneath it. With an external magnetic field parallel to graphene surface, the magneto-optical effect of substrate leads to the difference in modal indices of graphene plasmons, which also introduces an additional relative phase difference between these two plasmons during excitation and propagation. Together, these two effects enable us to tailor the position of focal points through external magnetic field, which has been described by an analytical approach based on phase matching and verified by numerical simulations. With an operation wavelength of 8500 nm and an external magnetic field from B = ?1 T to B = 1 T, a shift distance over one and a half times of plasmons wavelength for focal points or donut-shaped field profiles can be obtained under linearly or circularly polarized light. The proposed scheme has potentials in diverse applications, such as the tunable nanofocusing and particle manipulation.  相似文献   

17.
In this paper, we study the nanoscale-focusing effect in the far field for a spiral plasmonic lens with a concentric annular groove by using finite-difference time domain simulation. The simulation result demonstrates that a left-hand spiral plasmonic lens can concentrate an incident right-hand circular polarization light into a focal spot at the exit surface. And this spot can be focused into far field due to constructive interference of the scattered light by the annular groove. The focal length and the focal depth can be adjusted by changing the groove radius and number of grooves within a certain range. These properties make it possible to probe the signal of spiral plasmonic lens in far field by using conventional optical devices.  相似文献   

18.
A subwavelength metallic heterostructure is put forth for the purpose of suppressing sidelobes and improving superfocusing at a quasi-far field region. Improvement has been made by means of optimization of the heterostructure composed of structured Au and Ag thin films. By tuning thicknesses of both the structured Au and Ag films, we can modulate propagation distance of the plasmonic lens and beam width of main lobe for the superfocusing. A finite-difference and time-domain (FDTD) algorithm-based computational numerical calculation was carried out for analyzing the focusing performance and tuning ability of the metal films. Our computational calculation results show that the sidelobes which play negative role for the focusing can be suppressed significantly in the case of the metal film thicknesses of h Au = 50 nm and h Ag = 10 nm. Theoretically, the metallic structure with smaller thicknesses of the structured Au and Ag films is helpful for improving the focusing performance. This heterostructure-based device is possible to be used as a superlens or nanoprobe in data storage, nanometrology/inspection, and biosensing etc.  相似文献   

19.
Li  Jie  Yang  Chaojie  Li  Jiaming  Li  Ziwei  Zu  Shuai  Song  Siyu  Zhao  Huabo  Lin  Feng  Zhu  Xing 《Plasmonics (Norwell, Mass.)》2014,9(4):879-886

In this review, we show that by designing the metallic nanostructures, the surface plasmon (SP) focusing has been achieved, with the focusing spot at a subwavelength scale. The central idea is based on the principle of optical interference that the constructive superposition of SPs with phase matching can result in a considerable electric-field enhancement of SPs in the near field, exhibiting a pronounced focusing spot. We first reviewed several new designs for surface plasmon focusing by controlling the metallic geometry or incident light polarization: We made an in-plane plasmonic Fresnel zone plates, a counterpart in optics, which produces an obvious SP focusing effect; We also fabricated the symmetry broken nanocorrals which can provide the spatial phase difference for SPs, and then we propose another plasmon focusing approach by using semicircular nanoslits, which gives rise to the phase difference through changing refractive index of the medium in the nanoslits. Further, we showed that the spiral metallic nanostructure can be severed as plasmonic lens to control the plasmon focusing under a linearly polarized light with different angles.

  相似文献   

20.
A plasmonic lens with variant periods was investigated for optical behavior at near-field by means of numerical computational method. To study influence of incident light on different polarization modes, we considered linear polarization, circular polarization, elliptical polarization, radial polarization (RP), and azimuthally polarization in our computational analyses. A finite difference and time domain algorithm is employed in the numerical study. Our computational numerical calculation results demonstrate that focusing performance for the plasmonic lens illuminated under radial polarization is best in comparison to that of the illumination with the other four polarization states. The plasmonic lens with RP illumination can realize superfocusing with ultra-long depth of focus. It is possible to be used as an optical probe or a type of plasmonic lens for imaging with high resolution in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号