首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The collective electronic excitations in thin Ag films deposited onto the Ni(111) surface were studied by high-resolution electron energy loss spectroscopy. A broad loss peak at 7.7 eV was assigned to the Ag multipole plasmon, in excellent agreement with calculations based on s-d polarization model. Ag multipole plasmon was excited only at grazing incidence. Furthermore, a strong dependence on the impinging energy exists. Multipole plasmon could be measured only for a very strict range of primary electron beam energies and it was excited by electrons scattered at a reflection plane located just underneath the jellium edge. Such mode was found to be dramatically more sensible to the state of the surface with respect to ordinary surface plasmon. Moreover, we report experimental evidence of interference effects in surface plasmon excitation.  相似文献   

2.
Significant efficiency improvements are reported in mesoscopic perovskite solar cells based on the development of a low‐temperature solution‐processed ZnO nanorod (NR) array exhibiting higher NR aspect ratio, enhanced electron density, and substantially reduced work function than conventional ZnO NRs. These features synergistically result in hysteresis‐free, scan‐independent, and stabilized devices with an efficiency of 16.1%. Electron‐rich, nitrogen‐doped ZnO (N:ZnO) NR‐based electron transporting materials (ETMs) with enhanced electron mobility produced using ammonium acetate show consistently higher efficiencies by one to three power points than undoped ZnO NRs. Additionally, the preferential electrostatic interaction between the ­nonpolar facets of N:ZnO and the conjugated polyelectrolyte polyethylenimine (PEI) has been relied on to promote the hydrothermal growth of high aspect ratio NR arrays and substantially improve the infiltration of the perovskite light absorber into the ETM. Using the same interactions, a conformal PEI coating on the electron‐rich high aspect ratio N:ZnO NR arrays is ­successfully applied, resulting in a favorable work function shift and altogether leading to the significant boost in efficiency from <10% up to >16%. These results largely surpass the state‐of‐the‐art PCE of ZnO‐based perovskite solar cells and highlight the benefits of synergistically combining mesoscale control with doping and surface modification.  相似文献   

3.
We have calculated the electronic energy loss of proton and α-particle beams in dry DNA using the dielectric formalism. The electronic response of DNA is described by the MELF-GOS model, in which the outer electron excitations of the target are accounted for by a linear combination of Mermin-type energy-loss functions that accurately matches the available experimental data for DNA obtained from optical measurements, whereas the inner-shell electron excitations are modeled by the generalized oscillator strengths of the constituent atoms. Using this procedure we have calculated the stopping power and the energy-loss straggling of DNA for hydrogen- and helium-ion beams at incident energies ranging from 10 keV/nucleon to 10 MeV/nucleon. The mean excitation energy of dry DNA is found to be I = 81.5 eV. Our present results are compared with available calculations for liquid water showing noticeable differences between these important biological materials. We have also evaluated the electron excitation probability of DNA as a function of the transferred energy by the swift projectile as well as the average energy of the target electronic excitations as a function of the projectile energy. Our results show that projectiles with energy ?100 keV/nucleon (i.e., around the stopping-power maximum) are more suitable for producing low-energy secondary electrons in DNA, which could be very effective for the biological damage of malignant cells.  相似文献   

4.
Intracellular bioconversion of auric ion (Au3+) to gold nanorod (Au0) by the cyanobacterium Nostoc ellipsosporum has been observed for the first time in laboratory condition. The nanorods were produced within the cell after exposing the healthy growing filaments to 15 mg L−1 gold (III) solution (pH 4.5) for 48 h at 20°C. The gold nanoparticles were extracted with sodium citrate solution and were subjected to UV–Visible spectroscopy. The characteristic surface-multiple plasmon bands at 560, 610, and 670 nm were observed. The nature and size of the particles were determined by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), and zeta potential studies. The nanorod size ranged from 137 to 209 nm in length and 33 to 69 nm in diameter. DLS study revealed the average hydrodynamic size as 435 nm and XRD study indicated the reduction of Au3+ to Au0. Methods of extraction and preservation of gold nanorod particles have also been studied.  相似文献   

5.
The labeling strategy with gold nanoparticles for the conventional surface plasmon resonance (SPR) signal enhancement has been frequently used for the sensitive determination of small molecules binding to its interaction partners. However, the influence of gold nanoparticles with different size and shape on SPR signal is not known. In this paper, three kinds of gold nanoparticles, namely nanorods, nanospheres, and nanooctahedrons with different size, were prepared and used to investigate their effects on the conventional SPR signal at a fixed excitation wavelength 670 nm. It was found that the SPR signal (i.e., resonant angle shift) was varied with the shapes and sizes of gold nanoparticles in suspension at a fixed concentration due to their different plasmon absorbance bands. For gold nanorods with different longitudinal absorbance bands, three conventional SPR signal regions could be clearly observed when the gold nanorod suspensions were separately introduced onto the SPR sensor chip surface. One region was the longitudinal absorbance bands coinciding with or close to the SPR excitation wavelength that suppressed the SPR angle shift. The second region was the longitudinal absorbance bands at 624 to 639 and 728 to 763 nm that produced a moderate increase on the SPR resonant angle shift. The third region was found for the longitudinal absorbance bands from 700 to 726 nm that resulted in a remarkable increase in the SPR angle shift responses. This phenomenon can be explained on the basis of calculation of the correlation of SPR angle shift response with the gold nanorod longitudinal absorbance bands. For nanospheres and nanooctahedrons, the SPR angle shift responses were found to be particle shape and size dependent in a simple way with a sustaining increase when the sizes of the nanoparticles were increased. Consequently, a guideline for choosing gold nanoparticles as tags is suggested for the SPR determination of small molecules with binding to the immobilized interaction partners.  相似文献   

6.
Electrochemical oxidation of serotonin (SN) onto zinc oxide (ZnO)-coated glassy carbon electrode (GCE) results in the generation of redox mediators (RMs) that are strongly adsorbed on electrode surface. The electrochemical properties of zinc oxide-electrogenerated redox mediator (ZnO/RM) (inorganic/organic) hybrid film-coated electrode has been studied using cyclic voltammetry (CV). The scanning electron microscope (SEM), atomic force microscope (AFM), and electrochemical techniques proved the immobilization of ZnO/RM core/shell microparticles on the electrode surface. The GCE modified with ZnO/RM hybrid film showed two reversible redox peaks in acidic solution, and the redox peaks were found to be pH dependent with slopes of −62 and −60 mV/pH, which are very close to the Nernst behavior. The GCE/ZnO/RM-modified electrode exhibited excellent electrocatalytic activity toward the oxidations of ascorbic acid (AA), dopamine (DA), and uric acid (UA) in 0.1 M phosphate buffer solution (PBS, pH 7.0). Indeed, ZnO/RM-coated GCE separated the anodic oxidation waves of DA, AA, and UA with well-defined peak separations in their mixture solution. Consequently, the GCE/ZnO/RMs were used for simultaneous detection of DA, AA, and UA in their mixture solution. Using CV, calibration curves for DA, AA, and UA were obtained over the range of 6.0 × 10−6 to 9.6 × 10−4 M, 1.5 × 10−5 to 2.4 × 10−4 M, and 5.0 × 10−5 to 8 × 10−4 M with correlation coefficients of 0.992, 0.991, and 0.989, respectively. Moreover, ZnO/RM-modified GCE had good stability and antifouling properties.  相似文献   

7.
We study magnetic excitations at optical frequencies in disordered crescent-form split-ring resonators made of silver. The resonators that are less than 100 nm in diameter are fabricated on a 4 in. quartz wafer by using a simple, fast, and inexpensive fabrication technique. The measured transmission and polarization-rotation spectra of the resonators reveal the excitation of circulating electric currents that give rise to magnetic dipole moments in the structures at visible and ultraviolet light frequencies. These frequencies have higher values than the limiting magnetic-resonance frequency predicted by the conventional LC resonance model presumably due to the plasmonic nature of the excitations.  相似文献   

8.

Simple thermal evaporation technique has been used to prepare Pb-doped ZnO nanotube films on Si (100) substrate. X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX) characterization have been employed to investigate the element’s contents, which indicates the presence of stoichiometry ZnO nanotube film. The XRD pattern has shown the wurtzite phase of ZnO and polycrystalline structure. Thickness and morphology of the films were explored from the cross sectional of the films and the surface using scanning electron microscopy (SEM) images. SEM images have confirmed the ZnO nanotubes and modifications of the morphology when adding Pb; the recorded images have proved that the diameter of the nanotubes is about 50 nm. However, AFM and SEM images have shown dense structure (without nanotubes) for non-doped ZnO film (Pb = 0 wt.%).

  相似文献   

9.
Localized surface plasmon resonance (LSPR) for longitudinal mode of gold nanorod is simulated by using Gans theory. The parameters like surface scattering, radiation damping, and dynamic depolarization of radiation across the surface of nanorod affecting response of free electrons towards optical excitation are considered. Simulation results show that refractive index sensitivity linearly rises with size and aspect ratio, whereas this leads to the broadening of resonant line width also. Therefore, to optimize the size of nanorod, figure of merit (FOM) is calculated and observed that optimized width is 15 nm for an aspect ratio of 2, whereas it is 12 nm for aspect ratios 3 and 4. Further, optimization by using newly modified figure of merit (MFOM) shows that optimized width is 39 nm for aspect ratio of 2 and 24 nm for 3 and 4 aspect ratios. It is also found that at aspect ratio 2, both FOM and MFOM are higher than the aspect ratios 3 and 4. The quality factor calculation for LSPR response of nanorod explains its dependence with aspect ratio and optimized dimensions.  相似文献   

10.
Yongfu Teng 《Luminescence》2019,34(4):432-436
In the Ba9Lu2Si6O24 (BLS) host, Ce3+ shows cyan emissions peaking at 490 nm under 400 nm excitations. BLS:Tb3+ only can be effectively excited by 254 nm light and gives rise to green emissions at 553 nm. However, both the cyan and green emissions can be obtained in BLS:Ce3+,Tb3+ under 400 nm excitations due to effective energy transfers from Ce3+ to Tb3+. BLS:Mn2+ shows red emissions peaking at 610 nm under 414 nm excitations. By co‐doping Ce3+, Tb3+ and Mn2+, tunable full‐color emissions were obtained. The BLS:0.3Ce3+,0.6Tb3+,0.15Mn2+ single phosphor exhibits a white light with a high color rendering index of 85 and a correlated color temperature of 5480 K under 400 nm excitation.  相似文献   

11.
The dependence of nanoparticle size on surface-enhanced Raman scattering (SERS) from silver film over nanospheres substrate is studied. For a range of nanosphere sizes from 430 to 1,500 nm, optimum SERS signal is obtained with a nanosphere size of 1,000 nm at an excitation wavelength of 532 nm. We have clarified the physical origin of this optimization in an unambiguious way as due to resonant plasmonic excitations from 3D finite-difference time-domain simulations, as well as with the assistance of UV-visible reflectance spectrum.  相似文献   

12.
The current-voltage characteristics of Ni contacts with the surfaces of ZnO thin films as well as single crystal (0001) ZnO substrate are investigated. The ZnO thin film shows a conversion from Ohmic to rectifying behavior when annealed at 800°C. Similar findings are also found on the Zn-polar surface of (0001) ZnO. The O-polar surface, however, only shows Ohmic behavior before and after annealing. The rectifying behavior observed on the Zn-polar and ZnO thin film surfaces is associated with the formation of nickel zinc oxide (Ni1-xZnxO, where x = 0.1, 0.2). The current-voltage characteristics suggest that a p-n junction is formed by Ni1-xZnxO (which is believed to be p-type) and ZnO (which is intrinsically n-type). The rectifying behavior for the ZnO thin film as a result of annealing suggests that its surface is Zn-terminated. Current-voltage measurements could possibly be used to determine the surface polarity of ZnO thin films.  相似文献   

13.
To determine the mechanism of carotenoid-sensitized non-photochemical quenching in cyanobacteria, the kinetics of blue-light-induced quenching and fluorescence spectra were studied in the wild type and mutants of Synechocystis sp. PCC 6803 grown with or without iron. The blue-light-induced quenching was observed in the wild type as well as in mutants lacking PS II or IsiA confirming that neither IsiA nor PS II is required for carotenoid-triggered fluorescence quenching. Both fluorescence at 660 nm (originating from phycobilisomes) and at 681 nm (which, upon 440 nm excitation originates mostly from chlorophyll) was quenched. However, no blue-light-induced changes in the fluorescence yield were observed in the apcE mutant that lacks phycobilisome attachment. The results are interpreted to indicate that interaction of the Slr1963-associated carotenoid with - presumably - allophycocyanin in the phycobilisome core is responsible for non-photochemical energy quenching, and that excitations on chlorophyll in the thylakoid equilibrate sufficiently with excitations on allophycocyanin in wild type to contribute to quenching of chlorophyll fluorescence.  相似文献   

14.
The ZnO particle with varieties of morphology was prepared from ice-cube of zinc ammonium complex at boiling water surface in 1 min induction of thermal shock. The zinc ammonium complex in ice cube was developed using zinc acetate and biologically activated ammonia in 1 hr and kept in the freezer. Temperature gradient behaviour of the water medium during thermal shock was captured by the thermal camera and thermometer. Morphology study revealed a variety of flower-like ZnO particles with variable size from 1.0 to 2.5 μm. Further, ZnO particle morphologies were tuned by adding trisodium citrate and hexamine to obtain uniform spherical (2–3 μm) and flower (3–4 μm) shapes, respectively. XRD patterns revealed that all ZnO samples are of a hexagonal structure. Photocatalytic inactivation of E. coli has been investigated using various particle morphologies of ZnO in an aqueous solution/overcoated glass slide under sunlight. The photo-inactivation of E. coli by ZnO particles in suspension condition was better when compared to a coated glass slide method. AFM study confirmed the destruction of bacterial cell wall membrane by the photocatalytic effect. The particles morphology of photocatalyst is well dependent on antibacterial activity under sunlight.  相似文献   

15.
Cryo-energy-filtering transmission electron microscopy and electron energy-loss spectroscopy have been applied to study size confinement effects on electronic, dielectric, and optical properties of Ag(Br, I) nanocrystals. The dielectric permittivity, optical joint density of states, refractive index, extinction, and absorption for nanocrystals derived via Kramers–Kronig relations have been compared with experimental data for Ag(Br, I) tabular microcystals and ab initio linear muffin-tin orbital method in its atomic spheres approximation calculations for AgBr. Contrast tuning with the selected energy window between 0 and 100 eV enabled visualizing valence electron excitations in silver halides because of plasmons superimposed with interband transitions and Mott–Wannier excitons. The nonuniform contrast of nanocrystals revealed by cryo-energy-filtering transmission electron microscopy was referred to a size-confined coupling of surface and volume losses that could lead to oscillations of the image intensity with the nanocrystal size. A size-dependent enhancement of interband transitions at 4 eV correlated with the enhancement of exciton luminescence from nanocrystals because of contributions to the energy-level structure from carrier confinement and surface states.  相似文献   

16.
Cha Y  Mauzerall DC 《Plant physiology》1992,100(4):1869-1877
The energy storage of photosynthesis in the green alga Chlorella vulgaris was determined by pulsed, time-resolved photoacoustics. The energy storage of the linear electron transfer process in photosynthesis, of cyclic photosystem (PS) I, and possibly of PSII was determined by selection of excitation wavelength and of flash interval. At 695 nm excitation, a rather large cyclic PSI energy storage of 0.68 ± 0.04 eV/quantum of energy at 8 ms after a 1-μs flash was obtained. This energy remained the same at flash intervals of 0.35 to 60 s and was independent of the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. We tentatively assign this energy to the ferredoxin-NADP-reductase-ferredoxin and oxidized cytochrome b6/f complexes. An efficient distribution of energy between cyclic and linear systems is obtained with the simple assumption that the turnover time of the cyclic system is slower than that of the linear system. The energy storage of linear electron flow was determined by 655 nm excitation of Chlorella with a short flash interval of 0.35 s per flash. It was calculated to be 0.50 ± 0.03 eV/hv, close to that expected for oxygen and NADPH formation. The energy storage of PSII is determined by excitation of Chlorella at 655 nm with a long flash interval of 60 s per flash. It was calculated to be 1.07 ± 0.05 eV/hv, consistent with the energy storage being in S-states and the secondary electron acceptor of PSII with a calculated redox energy of 1.03 eV/hv. In the presence of 1 μm 3-(3,4-dichlorophenyl)-1,1-dimethylurea, the calculated energy storage in PSII is still significant, 0.53 ± 0.04 eV/hv. This probably indicates a significant cyclic electron flow around PSII. These cyclic flows may contribute considerably to energy storage in photosynthesis.  相似文献   

17.
In laboratory experiments, the antifouling (AF) properties of zinc oxide (ZnO) nanorod coatings were investigated using the marine bacterium Acinetobacter sp. AZ4C, larvae of the bryozoan Bugula neritina and the microalga Tetraselmis sp. ZnO nanorod coatings were fabricated on microscope glass substrata by a simple hydrothermal technique using two different molar concentrations (5 and 10?mM) of zinc precursors. These coatings were tested for 5?h under artificial sunlight (1060?W?m?2 or 530?W?m?2) and in the dark (no irradiation). In the presence of light, both the ZnO nanorod coatings significantly reduced the density of Acinetobacter sp. AZ4C and Tetraselmis sp. in comparison to the control (microscope glass substratum without a ZnO coating). High mortality and low settlement of B. neritina larvae was observed on ZnO nanorod coatings subjected to light irradiation. In darkness, neither mortality nor enhanced settlement of larvae was observed. Larvae of B. neritina were not affected by Zn2+ ions. The AF effect of the ZnO nanorod coatings was thus attributed to the reactive oxygen species (ROS) produced by photocatalysis. It was concluded that ZnO nanorod coatings effectively prevented marine micro and macrofouling in static conditions.  相似文献   

18.
Citrus black rot disease being caused by Alternaria citri is a major disease of citrus plants with 30–35% economic loss annually. Fungicides had not been effective in the control of this disease during last few decades. In the present study, antifungal role of green synthesized zinc oxide (ZnO) and copper oxide (CuO) nanoparticles (NPs) were studied against Alternaria citri. Alternaria citri was isolated from disease fruits samples and was identified by staining with lacto phenol cotton blue. Furthermore, CuO and ZnO NPs were synthesized by utilizing the lemon peels extract as the reducing and capping agent. Nanoparticles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. From the XRD data, the calculated size of CuO NPs was to be 18 nm and ZnO NPs was16.8 nm using Scherrer equation. The SEM analyses revealed the surface morphology of all the metal oxide NPs synthesized were rounded, elongated and or spherical in the shape. The zone of inhibition was observed to be 50 ± 0.5 mm by CuO NPs, followed by 51.5 ± 0.5 mm by ZnO NPs and maximum zone of antifungal inhibition was observed to be 53 ± 0.6 mm by mix metal oxide NPs. The results of minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of the synthesized nanoparticles showed that at the certain concentrations (80 mg ml?1), these NPs were capable of inhibiting the fungal growth, whereas above that specified concentrations (100 mg ml?1), NPs completely inhibited the fungal growth. Based on these findings, the green synthesized NPs can be used as alternative to fungicide in order to control the citrus black rot disease.  相似文献   

19.
The optical properties of colloidal ZnO nanoparticle (NP) solutions, with size ranging from several nm to around 200 nm, have been tailored to have high optical nonlinearity for bioimaging with no auto‐fluorescence above 750 nm and minimal auto‐fluorescence below 750 nm. The high second harmonic conversion efficiency enables selective tissue imaging and cell tracking using tunable near‐infrared femtosecond laser source ranging from 750‐980 nm. For laser energies exceeding the two‐photon energy of the bandgap of ZnO (half of 3.34 eV), the SHG signal greatly decreases and the two‐photon emission becomes the dominant signal. The heat generated due to two‐photon absorption within the ZnO NPs enable selective cell or localized tissue destruction using excitation wavelength ranging from 710–750 nm. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
High-density and well-aligned ZnO–ZnS core–shell nanocone arrays were synthesized on fluorine-doped tin oxide glass substrate using a facile and cost-effective two-step approach. In this synthetic process, the ZnO nanocones act as the template and provide Zn2+ ions for the ZnS shell formation. The photoluminescence spectrum indicates remarkably enhanced luminescence intensity and a small redshift in the UV region, which can be associated with the strain caused by the lattice mismatch between ZnO and ZnS. The obtained diffuse reflectance spectra show that the nanocone-based heterostructure reduces the light reflection in a broad spectral range and is much more effective than the bare ZnO nanocone and nanorod structures. Dye-sensitized solar cells based on the heterostructure ZnO–ZnS nanocones are assembled, and high conversion efficiency (η) of approximately 4.07% is obtained. The η improvement can be attributed primarily to the morphology effect of ZnO nanocones on light-trapping and effectively passivating the interface surface recombination sites of ZnO nanocones by coating with a ZnS shell layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号