首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Maximum bite force affects craniofacial morphology and an organism's ability to break down foods with different material properties. Humans are generally believed to produce low bite forces and spend less time chewing compared with other apes because advances in mechanical and thermal food processing techniques alter food material properties in such a way as to reduce overall masticatory effort. However, when hominins began regularly consuming mechanically processed or cooked diets is not known. Here, we apply a model for estimating maximum bite forces and stresses at the second molar in modern human, nonhuman primate, and hominin skulls that incorporates skeletal data along with species‐specific estimates of jaw muscle architecture. The model, which reliably estimates bite forces, shows a significant relationship between second molar bite force and second molar area across species but does not confirm our hypothesis of isometry. Specimens in the genus Homo fall below the regression line describing the relationship between bite force and molar area for nonhuman anthropoids and australopiths. These results suggest that Homo species generate maximum bite forces below those predicted based on scaling among australopiths and nonhuman primates. Because this decline occurred before evidence for cooking, we hypothesize that selection for lower bite force production was likely made possible by an increased reliance on nonthermal food processing. However, given substantial variability among in vivo bite force magnitudes measured in humans, environmental effects, especially variations in food mechanical properties, may also be a factor. The results also suggest that australopiths had ape‐like bite force capabilities. Am J Phys Anthropol 151:544–557, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
The relationship between human craniofacial morphology and the biomechanical efficiency of bite force generation in widely varying muscular and skeletal types is unknown. To address this problem, we selected 22 subjects with different facial morphologies and used magnetic resonance imaging, cephalometric radiography, and data from dental casts to reconstruct their craniofacial tissues in three dimensions. Conventional cephalometric analyses were carried out, and the cross-sectional sizes of the masseter and medial pterygoid muscles were measured from reconstituted sections. The potential abilities of the muscles to generate bite forces at the molar teeth and mandibular condyles were calculated according to static equilibrium theory using muscle, first molar, and condylar moment arms. On average, the masseter muscle was about 66% larger in cross section than the medial pterygoid and was inclined more anteriorly relative to the functional occlusal plane. There was a significant positive correlation (P less than 0.01) between the cross-sectional areas of the masseter and medial pterygoid muscles (r = 0.75) and between the bizygomatic arch width and masseter cross-sectional area (r = 0.56) and medial pterygoid cross-sectional area (r = 0.69). The masseter muscle was always a more efficient producer of vertically oriented bite force than the medial pterygoid. Putative bite force from the medial pterygoid muscle alone correlated positively with mandibular length and inversely with upper face height. When muscle and tooth moment arms were considered together, a system efficient at producing force on the first molar was statistically associated with a face having a large intergonial width, small intercondylar width, narrow dental arch, forward maxilla, and forward mandible. There was no significant correlation between muscle cross-sectional areas and their respective putative bite forces. This suggests that there is no simple relationship between the tension-generating capacity of the muscles and their mechanical efficiency as described by their spatial arrangement. The study shows that in a modern human population so many combinations of biomechanically relevant variables are possible that subjects cannot easily be placed into ideal or nonideal categories for producing molar force. Our findings also confirm the impression that similar bite-force efficiencies can be found in subjects with disparate facial features.  相似文献   

3.
Diminished bite force has been considered a defining feature of modern Homo sapiens, an interpretation inferred from the application of two-dimensional lever mechanics and the relative gracility of the human masticatory musculature and skull. This conclusion has various implications with regard to the evolution of human feeding behaviour. However, human dental anatomy suggests a capacity to withstand high loads and two-dimensional lever models greatly simplify muscle architecture, yielding less accurate results than three-dimensional modelling using multiple lines of action. Here, to our knowledge, in the most comprehensive three-dimensional finite element analysis performed to date for any taxon, we ask whether the traditional view that the bite of H. sapiens is weak and the skull too gracile to sustain high bite forces is supported. We further introduce a new method for reconstructing incomplete fossil material. Our findings show that the human masticatory apparatus is highly efficient, capable of producing a relatively powerful bite using low muscle forces. Thus, relative to other members of the superfamily Hominoidea, humans can achieve relatively high bite forces, while overall stresses are reduced. Our findings resolve apparently discordant lines of evidence, i.e. the presence of teeth well adapted to sustain high loads within a lightweight cranium and mandible.  相似文献   

4.
A previously described three-dimensional mathematical model of the human masticatory system, predicting maximum possible bite forces in all directions and the recruitment patterns of the masticatory muscles necessary to generate these forces, was validated in in vivo experiments. The morphological input parameters to the model for individual subjects were collected using MRI scanning of the jaw system. Experimental measurements included recording of maximum voluntary bite force (magnitude and direction) and surface EMG from the temporalis and masseter muscles. For bite forces with an angle of 0, 10 and 20 degrees relative to the normal to the occlusal plane the predicted maximum possible bite forces were between 0.9 and 1.2 times the measured ones and the average ratio of measured to predicted maximum bite force was close to unity. The average measured and predicted muscle recruitment patterns showed no striking differences. Nevertheless, some systematic differences, dependent on the bite force direction, were found between the predicted and the measured maximum possible bite forces. In a second series of simulations the influence of the direction of the joint reaction forces on these errors was studied. The results suggest that they were caused primarily by an improper determination of the joint force directions.  相似文献   

5.
As a negative regulator of muscle size, myostatin (Mstn) impacts the force-production capabilities of skeletal muscles. In the masticatory system, measures of temporalis-stimulated bite forces in constitutive myostatin KOs suggest an absolute, but not relative, increase in jaw-muscle force. Here, we assess the phenotypic and physiologic impact of postnatal myostatin inhibition on bite mechanics using an inducible conditional KO mouse in which myostatin is inhibited with doxycycline (DOX). Given the increased control over the timing of gene inactivation in this model, it may be more clinically-relevant for developing interventions for age-associated changes in the musculoskeletal system. DOX was administered for 12 weeks starting at age 4 months, during which time food intake was monitored. Sex, age and strain-matched controls were given the same food without DOX. Bite forces were recorded just prior to euthanasia after which muscle and skeletal data were collected. Food intake did not differ between control or DOX animals within each sex. DOX males were significantly larger and had significantly larger masseters than controls, but DOX and control females did not differ. Although there was a tendency towards higher absolute bite forces in DOX animals, this was not significant, and bite forces normalized to masseter mass did not differ. Mechanical advantage for incisor biting increased in the DOX group due to longer masseter moment arms, likely due to a more anteriorly-placed masseter insertion. Despite only a moderate increase in bite force in DOX males and none in DOX females, the increase in masseter mass in males indicates a potentially positive impact on jaw muscles. Our data suggest a sexual dimorphism in the role of mstn, and as such investigations into the sex-specific outcomes is warranted.  相似文献   

6.
Experimental studies and mathematical models are disparate approaches for inferring the stress and strain environment in mammalian jaws. Experimental designs offer accurate, although limited, characterization of biomechanical behavior, while mathematical approaches (finite element modeling in particular) offer unparalleled precision in depiction of strain magnitudes, directions, and gradients throughout the mandible. Because the empirical (experimental) and theoretical (mathematical) perspectives differ in their initial assumptions and their proximate goals, the two methods can yield divergent conclusions about how masticatory stresses are distributed in the dentary. These different sources of inference may, therefore, tangibly influence subsequent biological interpretation. In vitro observation of bone strain in primate mandibles under controlled loading conditions offers a test of finite element model predictions. Two issues which have been addressed by both finite element models and experimental approaches are: (1) the distribution of torsional shear strains in anthropoid jaws and (2) the dissipation of bite forces in the human alveolar process. Not surprisingly, the experimental data and mathematical models agree on some issues, but on others exhibit discordance. Achieving congruence between these methods is critical if the nature of the relationship of masticatory stress to mandibular form is to be intelligently assessed. A case study of functional/mechanical significance of gnathic morphology in the hominid genus Paranthropus offers insight into the potential benefit of combining theoretical and experimental approaches. Certain finite element analyses claim to have identified a biomechanical problem unrecognized in previous comparative work, which, in essence, is that the enlarged transverse dimensions of the postcanine corpus may have a less important role in resisting torsional stresses than previously thought. Experimental data have identified subperiosteal cortical thinning as a culprit in diminishing the role of cross-sectional geometry in conditioning the strain environment. These observations raise questions concerning the biomechanical significance of mandibular form in early hominids, fueling persistent arguments over whether gnathic morphology can be related to dietary specialization in the "robust" australopithecines. Nonmechanical explanations (e.g., tooth size or body size) for Paranthropus mandibular dimensions, however, are not compelling as competing hypotheses. Both theoretical and experimental models are in need of refinement before it is possible to conclude that the jaws of the "robust" australopithecines are not functionally linked to elevated masticatory loads.  相似文献   

7.
Between weaning and adulthood, the length and height of the facial skull of the New Zealand rabbit (Oryctolagus cuniculus) double, whereas much less growth occurs in the width of the face and in the neurocranium. There is a five-fold increase in mass of the masticatory muscles, caused mainly by growth in cross-sectional area. The share of the superficial masseter in the total mass increases at the cost of the jaw openers. There are changes in the direction of the working lines of a few muscles. A 3-dimensional mechanical model was used to predict bite forces at different mandibular positions. It shows that young rabbits are able to generate large bite forces at a wider range of mandibular positions than adults and that the forces are directed more vertically. In young and adult animals, the masticatory muscles differ from each other with respect to the degree of gape at which optimum sarcomere length is reached. Consequently, bite force can be maintained over a range of gapes, larger than predicted on basis of individual length-tension curves. Despite the considerable changes in skull shape and concurrent changes in the jaw muscles, the direction of the resultant force of the closing muscles and its mechanical advantage remain stable during growth. Observed phenomena suggest that during development the possibilities for generation of large bite forces are increased at the cost of a restriction of the range of jaw excursion.  相似文献   

8.
Variation in recent human mandibular form is often thought to reflect differences in masticatory behavior associated with variation in food preparation and subsistence strategies. Nevertheless, while mandibular variation in some human comparisons appear to reflect differences in functional loading, other comparisons indicate that this relationship is not universal. This suggests that morphological variation in the mandible is influenced by other factors that may obscure the effects of loading on mandibular form. It is likely that highly strained mandibular regions, including the corpus, are influenced by well‐established patterns of lower facial skeletal integration. As such, it is unclear to what degree mandibular form reflects localized stresses incurred during mastication vs. a larger set of correlated features that may influence bone distribution patterns. In this study, we examine the relationship between mandibular symphyseal bone distribution (i.e., second moments of area, cortical bone area) and masticatory force production (i.e., in vivo maximal bite force magnitude and estimated symphyseal bending forces) along with lower facial shape variation in a sample of n = 20 living human male subjects. Our results indicate that while some aspects of symphyseal form (e.g., wishboning resistance) are significantly correlated with estimates of symphyseal bending force magnitude, others (i.e., vertical bending resistance) are more closely tied to variation in lower facial shape. This suggests that while the symphysis reflects variation in some variables related to functional loading, the complex and multifactorial influences on symphyseal form underscores the importance of exercising caution when inferring function from the mandible especially in narrow taxonomic comparisons. Am J Phys Anthropol 153:387–396, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
A three-dimensional mathematical model of the human masticatory system, containing 16 muscle forces and two joint reaction forces, is described. The model allows simulation of static bite forces and concomitant joint reaction forces for various bite point locations and mandibular positions. The system parameters for the model were obtained from a cadaver head. Maximum possible bite forces were computed using optimization techniques; the optimization criterion we used was the minimizing of the relative activity of the most active muscle. The model predicts that at each specific bite point, bite forces can be generated in a wide range of directions, and that the magnitude of the maximum bite force depends on its direction. The relationship between bite force direction and its maximum magnitude depends on bite point location and mandibular position. In general, the direction of the largest possible bite force does not coincide with the direction perpendicular to the occlusal plane.  相似文献   

10.
In biomechanical investigations, geometrically accurate computer models of anatomical structures can be created readily using computed-tomography scan images. However, representation of soft tissue structures is more challenging, relying on approximations to predict the muscle loading conditions that are essential in detailed functional analyses. Here, using a sophisticated multi-body computer model of a reptile skull (the rhynchocephalian Sphenodon), we assess the accuracy of muscle force predictions by comparing predicted bite forces against in vivo data. The model predicts a bite force almost three times lower than that measured experimentally. Peak muscle force estimates are highly sensitive to fibre length, muscle stress, and pennation where the angle is large, and variation in these parameters can generate substantial differences in predicted bite forces. A review of theoretical bite predictions amongst lizards reveals that bite forces are consistently underestimated, possibly because of high levels of muscle pennation in these animals. To generate realistic bites during theoretical analyses in Sphenodon, lizards, and related groups we suggest that standard muscle force calculations should be multiplied by a factor of up to three. We show that bite forces increase and joint forces decrease as the bite point shifts posteriorly within the jaw, with the most posterior bite location generating a bite force almost double that of the most anterior bite. Unilateral and bilateral bites produced similar total bite forces; however, the pressure exerted by the teeth is double during unilateral biting as the tooth contact area is reduced by half.  相似文献   

11.
The tufted capuchin (Cebus apella) has been used in a number of comparative studies to represent a primate with craniofacial morphology indicative of hard-object feeding. Researchers have specifically referred to the tufted capuchin as a seed predator. Craniofacial features exhibited by the tufted capuchin, such as thick cortical bone in the mandibular corpus and symphysis, and a broad face associated with large masticatory muscles, permit the production and dissipation of relatively high masticatory forces. These morphologies, however, cannot distinguish between the tufted capuchin's propensity to exert higher forces when opening food with its anterior dentition or with its cheek teeth. It is also unclear whether these are adaptations for biting or chewing foods. This study uses a constrained lever model to compare the masticatory adaptations of C. apella to other cebids and atelids. Results show that the temporalis and masseter muscles in C. apella and C. olivaceus are more anteriorly positioned relative to nine other platyrrhine taxa. This condition, which appears to be ancestral among the Cebinae, increases force production at the incisors and canines while compromising third molar function. Cebus apella, has exaggerated this pattern. Field data on dietary toughness show that both capuchins typically select foods of low toughness, but on occasion, C. apella ingests food items of exceptional toughness. Thus, C. apella appears to maintain these biomechanical relationships by producing particularly high but relatively infrequent bite forces, particularly at the incisors and canines. However, adaptations for anterior dental use do not tightly constrain the diet of Cebus apella. This approach can be used to clarify the dietary adaptations of fossil taxa.  相似文献   

12.
This paper describes in detail the external morphology of LB1/1, the nearly complete and only known cranium of Homo floresiensis. Comparisons were made with a large sample of early groups of the genus Homo to assess primitive, derived, and unique craniofacial traits of LB1 and discuss its evolution. Principal cranial shape differences between H. floresiensis and Homo sapiens are also explored metrically. The LB1 specimen exhibits a marked reductive trend in its facial skeleton, which is comparable to the H. sapiens condition and is probably associated with reduced masticatory stresses. However, LB1 is craniometrically different from H. sapiens showing an extremely small overall cranial size, and the combination of a primitive low and anteriorly narrow vault shape, a relatively prognathic face, a rounded oval foramen that is greatly separated anteriorly from the carotid canal/jugular foramen, and a unique, tall orbital shape. Whereas the neurocranium of LB1 is as small as that of some Homo habilis specimens, it exhibits laterally expanded parietals, a weak suprameatal crest, a moderately flexed occipital, a marked facial reduction, and many other derived features that characterize post-habilis Homo. Other craniofacial characteristics of LB1 include, for example, a relatively narrow frontal squama with flattened right and left sides, a marked frontal keel, posteriorly divergent temporal lines, a posteriorly flexed anteromedial corner of the mandibular fossa, a bulbous lateral end of the supraorbital torus, and a forward protruding maxillary body with a distinct infraorbital sulcus. LB1 is most similar to early Javanese Homo erectus from Sangiran and Trinil in these and other aspects. We conclude that the craniofacial morphology of LB1 is consistent with the hypothesis that H. floresiensis evolved from early Javanese H. erectus with dramatic island dwarfism. However, further field discoveries of early hominin skeletal remains from Flores and detailed analyses of the finds are needed to understand the evolutionary history of this endemic hominin species.  相似文献   

13.
Analysis of masticatory function is the basis of clinical work in almost all fields of dentistry. Bite forces are the expression and measure of masticatory function. Physical training has an effect on the development of functional ability, motoric ability of the organism and the formation of desired physical proportions. The purpose of this study was to examine the association between physical fitness and bite force values. Because of strictly defined regulations in the army with regard to training and nutrition, Croatian Army recruits were ideal examinees for this examination. The examinees were 135 recruits. Bite forces were measured on three places (area of the central incisors, left and right in the area of the first molars) before and after three-months of training. Of all the examinees, 108 had increased their body weight, 12 had decreased it and 15 had not changed their body weight. The median of measured forces in the recruits prior to training was 291 N in the right (lateral quadrant), 285.5 N in the left lateral quadrant and 205 N in the anterior area. After training the median of measured forces in the right quadrant was 312 N, in the left 313 N and in the anterior area 216 N Greater bite forces after training on all measured places were statistically proved. Increased activity of masticatory muscles can have the same effect on the values of bite forces as bite training. There are few data on the correlation between physical muscles and values of bite forces. The results of those studies are doubtful. In this study, after three months of conditional training, the body mass of the recruits had increased and they expressed greater values of bite forces. However, correlation between body mass and bite forces cannot be proved with certainty.  相似文献   

14.
A stress analysis of the primate mandible suggests that vertically deep jaws in the molar region are usually an adaptation to counter increased sagittal bending stress about the balancing-side mandibular corpus during unilateral mastication. This increased bending stress about the balancing side is caused by an increase in the amount of balancing-side muscle force. Furthermore, this increased muscle force will also cause an increase in dorso-ventral shear stress along the mandibular symphysis. Since increased symphyseal stress can be countered by symphyseal fusion and as increased bending stress can be countered by a deeper jaw, deep jaws and symphyseal fusion are often part of the same functional pattern. In some primates (e.g., Cercocebus albigena), deep jaws are an adaptation to counter bending in the sagittal plane during powerful incisor biting, rather than during unilateral mastication. The stress analysis of the primate mandible also suggests that jaws which are transversely thick in the molar region are an adaptation to counter increased torsion about the long axis of the working-side mandibular corpus during unilateral mastication. Increased torsion of the mandibular corpus can be caused by an increase in masticatory muscle force, an increase in the transverse component of the postcanine bite force and/or an increase in premolar use during mastication. Patterns of masticatory muscle force were estimated for galagos and macaques, demonstrating that the ratio of working-side muscle force to balancing-side muscle force is approximately 1.5:1 in macaques and 3.5:1 in galagos during unilateral isometric molar biting. These data support the hypothesis that mandibular symphyseal fusion is an adaptative response to maximize unilateral molar bite force by utilizing a greater percentage of balancing-side muscle force.  相似文献   

15.
Ecological factors can be important to shape the patterns of morphological variation among human populations. Particularly, diet plays a fundamental role in craniofacial variation due to both the effect of the nutritional status—mostly dependent on the type and amount of nutrients consumed—on skeletal growth and the localized effects of masticatory forces. We examine these two dimensions of diet and evaluate their influence on morphological diversification of human populations from southern South America during the late Holocene. Cranial morphology was measured as 3D coordinates defining the face, base and vault. Size, form, and shape variables were obtained for 474 adult individuals coming from 12 samples. Diet composition was inferred from carious lesions and δ13C data, whereas bite forces were estimated using traits of main jaw muscles. The spatial structure of the morphological and ecological variables was measured using correlograms. The influence of diet composition and bite force on morphometric variation was estimated by a spatial regression model. Cranial variation and diet composition display a geographical structure, while no geographical pattern was observed in bite forces. Cranial variation in size and form is significantly associated with diet composition, suggesting a strong effect of systemic factors on cranial growth. Conversely, bite forces do not contribute significantly to the pattern of morphological variation among the samples analyzed. Overall, these results show that an association between diet composition and hardness cannot be assumed, and highlight the complex relationship between morphological diversification and diet in human populations. Am J Phys Anthropol 155:114–127, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
The thickness of dental enamel is often discussed in paleoanthropological literature, particularly with regard to differences in growth, health, and diet between Neandertals and modern humans. Paleoanthropologists employ enamel thickness in paleodietary and taxonomic studies regarding earlier hominins, but variation in enamel thickness within the genus Homo has not been thoroughly explored despite its potential to discriminate species and its relevance to studies of growth and development. Radiographic two-dimensional studies indicate that Neandertal molar enamel is thin relative to the thick enamel of modern humans, although such methods have limited accuracy. Here we show that, measured via accurate high-resolution microtomographic imaging, Neandertal molar enamel is absolutely and relatively thinner than modern human enamel at most molar positions. However, this difference relates to the ratio of coronal dentine volume to total crown volume, rather than the quantity of enamel per se. The absolute volume of Neandertal molar enamel is similar to that of modern humans, but Neandertal enamel is deposited over a larger volume of coronal dentine, resulting in lower average (and relative) enamel thickness values. Sample sizes do not permit rigorous intragroup comparisons, but Neandertal molar tissue proportions evince less variation than the modern human sample. Differences in three- and two-dimensional enamel thickness data describing Neandertal molars may be explained by dimensional reduction. Although molar tissue proportions distinguish Neanderthals from recent Homo sapiens, additional study is necessary to assess trends in tissue proportions in the genus Homo throughout the Pleistocene.  相似文献   

17.
18.
Bite force is the condition, expression and measure of the masticatory function. The purpose of this study was to examine, by means of a newly constructed electronic gnathodynamometer, the values of maximal bite forces in subjects with complete dentition, the time in which they express 50% and 75% respectively of the total forces value, and the shape of the bite curve during testing. The obtained data was statistically analyzed with respect to gender and age. Analysis of the variance confirmed the finding that there was no statistically significant correlation between the values of forces and subjects' age, but there was a statistically significant difference between males and females in the values of the bite forces in the front segment, as well as between the values of the force on anterior and posterior teeth. The correlation between the time T1 posterior right and T1 posterior left, and between T1 and T2 for anterior teeth are statistically significant. Analysis of the bite curves suggests that males "bite" shorter than females with a sharper peak of the curve. Numerical values and bite curves should be a diagnostic factor in the further follow-up of subjects or in the choice of prosthodontic therapy.  相似文献   

19.
The aim of this study was to obtain insight into the coactivation behaviour of the jaw muscles under various a priori defined static loading conditions of the mandible. As the masticatory system is mechanically redundant, an infinite number of recruitment patterns is theoretically possible to produce a certain bite force. Using a three-component force transducer and a feedback method, subjects could be instructed to produce a bite force of specific direction and magnitude under simultaneous registration of the EMG activity of anterior and posterior temporal, masseter and digastric muscles on each side. Forces were measured at the second premolars. Vertical, anterior, posterior, lateral and medial force directions were examined; in each direction force levels between 50 N and maximal voluntary force were produced. The results show that for all muscles the bite force-EMG relationship obeys a straight-line fit for forces exceeding 50 N. The relationship varies with bite force direction, except in the case of the digastric muscles. Variation is small for the anterior temporal and large for the posterior temporal and masseter muscles. The relative activation of muscles for a particular force in a particular direction in unique, despite the redundancy.  相似文献   

20.
A key assumption in ecomorphological studies is that morphology–function relationships are invariant due to underlying biomechanical principles. We tested the hypothesis that morphology–performance relationships are invariant across different seasons by examining how a key performance trait, bite force, and two aspects of morphology (head shape and dewlap size) changed seasonally in the field and in the laboratory in the green anole lizard Anolis carolinensis . We found that not only did bite force change seasonally (up to 80% within the same individual), but relationships between morphology and bite force are highly plastic. Of the three traits examined (bite force, head shape, and dewlap area), only head shape did not change seasonally. We noted opposing trends for how bite force and dewlap area changed seasonally; whereas dewlap areas were large in the spring, and small in the winter, bite forces were low in the spring and high in the winter. This pattern occurred because of a tradeoff at the individual level: individuals in the spring with large dewlaps and high bite forces diminish their dewlaps (but not bite force), whereas individuals with small dewlaps and low bite forces in the spring increase their bite forces (but not dewlap size). We also show that this trend was apparent both in the field (comparing different individuals) and the laboratory (comparing the same set of individuals under standardized conditions). Finally, seasonal changes were not consistent among individuals for either bite force or dewlap area, as individuals changed seasonally in proportion to their initial state. These findings cast doubt on the widely held view of invariant morphology–performance relationships, and offer a cautionary note for eco-morphological studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号