首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytoplasmic fragment of band 3 protein isolated from the human erythrocyte membrane was linked to a CNBr-activated Sepharose matrix in an attempt to measure, in batch experiments, its equilibrium binding constant with oxy- and deoxyhemoglobin at physiological pH and ionic strength values and in the presence or the absence of 2,3-diphosphoglycerate. All the experiments were done at pH 7.2, and equilibrium constants were computed on the basis of one hemoglobin tetramer bound per monomer of fragment. In 10 mM-phosphate buffer, a dissociation constant KD = 2 X 10(-4)M was measured for oxyhemoglobin and was shown to increase to 8 X 10(-4)M in the presence of 50 mM-NaCl. Association could not be demonstrated at higher salt concentrations. Diphosphoglycerate-stripped deoxyhemoglobin was shown to associate more strongly with the cytoplasmic fragment of band 3. In 10 mM-bis-Tris (pH 7.2) and in the presence of 120 mM-NaCl, a dissociation constant KD = 4 X 10(-4)M was measured. Upon addition of increasing amounts of 2,3-diphosphoglycerate, the complex formed between deoxyhemoglobin and the cytoplasmic fragment of band 3 was dissociated. On the reasonable assumption that the hemoglobin binding site present on band 3 fragment was not modified upon linking the protein to the Sepharose matrix, the results indicated that diphosphoglycerate-stripped deoxyhemoglobin or partially liganded hemoglobin tetramers in the T state could bind band 3 inside the intact human red blood cell.  相似文献   

2.
The association of 2,3-diphosphoglycerate with oxy- and deoxyhemoglobin was studied by means of ultrafiltration and microcalorimetry. It was found that in addition to parameters that are known to influence the binding of 2,3-diphosphoglycerate to both species of hemoglobin (such as pH, temperature and concentration of competing anion), the association is also strongly dependent on the hemoglobin concentration. The difference between the apparent association constants for the formation of the complex of the organic phosphate with oxy- and deoxyhemoglobin is relatively small. At pH 7.3, 25° C and 0.154 M chloride this difference is only 0.6 kcal/mole of free energy favoring the Hb·DPG complex. This free energy difference increases with decreasing pH but is not strongly affected by hemoglobin concentration. The enthalpy change for the formation of the 2,3-diphosphoglycerate complex with deoxyhemoglobin is 8–10 kcal/mole more exothermic than the complex with oxyhemoglobin.  相似文献   

3.
Methyl acetyl phosphate binds to the 2,3-diphosphoglycerate (2,3-DPG) binding site of hemoglobin and selectively acetylates three amino groups at or near that site. The subsequent binding of 2,3-DPG is thus impeded. When intact sickle cells are exposed to methyl acetyl phosphate, their abnormally high density under anaerobic conditions is reduced to the density range of oxygenated, nonsickling erythrocytes. This change is probably due to a combination of direct and indirect effects induced by the specific acetylation. The direct effect is on the solubility of deoxyhemoglobin S, which is increased from 17 g/dL for unmodified hemoglobin S to 22 g/dL for acetylated hemoglobin S at pH 6.8. Acetylated hemoglobin S does not gel at pH 7.4, up to a concentration of 32 g/dL. The indirect effect could be due to the decreased binding of 2,3-DPG to deoxyhemoglobin S within the sickle erythrocyte, thus hindering the conversion of oxyhemoglobin S to the gelling form, deoxyhemoglobin S.  相似文献   

4.
The relative affinity of diphosphoglycerate and ATP for hemoglobin dimers and tetramers can be measured under conditions where the protein is in large molar excess over the polyphosphate. Binding of both compounds to dimers was about 25 times stronger than to tetramers in the case of the three low-spin hemoglobins, oxyhemoglobin, carboxyhemoglobin and cyanomethemoglobin. The mutation in hemoglobin Kansas leads to an increased dissociation into alpha beta dimers. The increase in diphosphoglycerate binding by this hemoglobin was in good agreement with that expected from the dimer-tetramer dissociation constant over a wide range of hemoglobin concentrations. In contrast to the liganded hemoglobins, both deoxyhemoglobin and aquomethemoglobin bind the two polyanions as tetramers.  相似文献   

5.
Quasi-elastic light scattering has been used to measure the change in the translational diffusion coefficient of hemoglobin upon oxygenation and the difference in the diffusion coefficients of oxy- and methemoglobin. The diffusion coefficients of oxy- and methemoglobin were found to be the same within the experimental accuracy of 0.2%, while the diffusion coefficient of oxyhemoglobin tetramers in solution at 13 mg/ml was found to be 0.8% smaller than that of deoxyhemoglobin at the same concentration, when the reversible dissociation of oxyhemoglobin tetramers into dimers was taken into account. In the limit of zero concentration, the oxyhemoglobin diffusion coefficient was found to be 1.5% ± 1.0% smaller than that of deoxyhemoglobin. This result is in very good agreement with what we predict using atomic coordinates to model the liganded and unliganded hemoglobin molecules as ellipsoids of revolution.  相似文献   

6.
The number of Bohr protons released upon oxygenation has been measured over a large range of human hemoglobin concentrations (0.02 to 4.5 mM) in the presence of equimolar amounts of D-glycerate 2,3-bisphosphate. From these data the association constants for the binding of this organic phosphate to deoxyhemoglobin and oxyhemoglobin were calculated at different pH values. The maximum number of protons absorbed upon binding to oxyhemoglobin was determined as well. The maximum number of protons bound to deoxyhemoglobin upon binding of D-glycerate 2,3-bisphosphate was measured independently. From the pH dependence of the association constants and the maximum number of protons absorbed it could be concluded that only one D-glycerate 2,3-bisphosphate can be bound to both deoxyhemoglobin and oxyhemoglobin.  相似文献   

7.
A new method for determination of the tetramer-dimer dissociation constant Ku4.2 of deoxyhemoglobin is described. The method involves photolysis of hemoglobin solutions containing a few percent of bound CO (e.g. less than 3%). Under these conditions the nature of the observed CO rebinding is primarily determined by the properties of the dominant species, deoxyhemoglobin. The method makes use of the 30-fold difference in the rate constant describing CO binding to hemoglobin dimers and deoxyhemoglobin tetramers. Because of this large difference in rate constants CO rebinding is made significantly more rapid by the presence of even small concentrations of dimers. Treating this reaction as CO binding to a mixture of hemoglobin dimers and tetramers allows the determination of Ku4.2. Data is presented showing application of the method to human deoxyhemoglobin in the range from pH 9.5 to 11.2.  相似文献   

8.
Previous studies have shown that pteroylheptaglutamate (PteGlu7) can form a 1:1 complex with deoxyhemoglobin. The solution and crystallographic studies reported in this paper delineate the nature of the PteGlu7 binding site. We find that the three structural elements of PteGlu7 (the pteridine moiety, the p-aminobenzoyl portion, and the glutamate groups) each contribute to the binding energy by interacting with residues in the central cavity between the beta subunits and with residues at the alpha 1 beta 1 interface. Identification of the 2,3-diphosphoglycerate (DPG) binding site as part of the PteGlu7 binding site was accomplished in two ways; first by the demonstration of reduced PteGlu7 binding to hemoglobin selectively modified by pyridoxylation at this site, and second by the finding that DPG and PteGlu7 bind to deoxyhemoglobin in a competitive manner. In addition, since analogs of PteGlu7 in which the pteridine moiety is modified display reduced binding, it can be concluded that the pteridine group also contributes significantly to the binding energy. The crystallographic studies are completely consistent with the results determined in solution. A difference electron density image at 4.3 A resolution shows that the pteridine and p-aminobenzoyl groups are nestled against an interior edge of the alpha 1 beta 1 interface with the pteridine ring interacting with Phe 36 alpha 1 and the p-aminobenzoyl group positioned against a portion of the H helix between residues Lys 132 beta 1 and Ala 135 beta 1. The difference density for the glutamate residues is less well resolved (for reasons described in the text), but it is clear that some of the carboxylate side chains must interact with residues at the DPG binding site.  相似文献   

9.
The effect of 2,3-diphospho-D-glycerate on the sedimentation coefficient of carbon monoxide hemoglobin was correlated with the fraction of rapidly reacting hemoglobin observed subsequent to flash photolysis at 23 degrees C at pH 7.30 in buffers of 0.1 M ionic strength. Concentrations of the organic phosphate up to about 5 mM resulted in an increase in S20,w, consistent with an increase in the fraction of tetrameric hemoglobin. A decrease in rapidly reacting hemoglobin parallelled the increase in the sedimentation coefficient. Between 5 and 20 mM 2,3-diphosphoglycerate, S20,w decreased, suggesting that dissociation to dimers was enhanced. An increase in rapidly reacting hemoglobin was also observed in this concentration range. Similar sedimentation results were obtained with oxyhemoglobin at pH 7.00 and carbon monoxide hemoglobin at pH 7.06. Assuming single binding sites on each species, the dissociation constants for 2,3-diphosphoglycerate binding to tetrameric and dimeric HbCO are 0.2-0.3 mM and 2-5 mM at pH 7.30. This biphasic effect of this physiologically important organic phosphate on the state of aggregation of R state hemoglobin has not been previously reported, but it is similar to that previously noted with inositol hexaphosphate, which enhanced tetramer formation at low concentrations, while at higher concentrations it promoted hemoglobin dissociation to dimers (White, S. L. (1976) J. Biol. Chem. 251, 4763-4769; Gray, R. D. (1980) J. Biol. Chem. 255, 1812-1818).  相似文献   

10.
I M Russu  S S Wu  K A Bupp  N T Ho  C Ho 《Biochemistry》1990,29(15):3785-3792
High-resolution 1H and 31P nuclear magnetic resonance spectroscopy has been used to investigate the binding of 2,3-diphosphoglycerate to human normal adult hemoglobin and the molecular interactions involved in the allosteric effect of the 2,3-diphosphoglycerate molecule on hemoglobin. Individual hydrogen ion NMR titration curves have been obtained for 22-26 histidyl residues of hemoglobin and for each phosphate group of 2,3-diphosphoglycerate with hemoglobin in both the deoxy and carbonmonoxy forms. The results indicate that 2,3-diphosphoglycerate binds to deoxyhemoglobin at the central cavity between the two beta chains and the binding involves the beta 2-histidyl residues. Moreover, the results suggest that the binding site of 2,3-diphosphoglycerate to carbonmonoxyhemoglobin contains the same (or at least some of the same) amino acid residues responsible for binding in the deoxy form. As a result of the specific interactions with 2,3-diphosphoglycerate, the beta 2-histidyl residues make a significant contribution to the alkaline Bohr effect under these experimental conditions (up to 0.5 proton/Hb tetramer). 2,3-Diphosphoglycerate also affects the individual hydrogen ion equilibria of several histidyl residues located away from the binding site on the surface of the hemoglobin molecule, and, possibly, in the heme pockets. These results give the first experimental demonstration that long-range electrostatic and/or conformational effects of the binding could play an important role in the allosteric effect of 2,3-diphosphoglycerate on hemoglobin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Phosphorus nuclear magnetic resonance (31P NMR) spectroscopy was used to estimate the percent of 2,3-diphosphoglycerate and ATP bound to hemoglobin in intact human erythrocytes at 37 degrees C. Binding was assessed by comparing the chemical shifts (delta) of 2,3-diphosphoglycerate and of ATP observed in intact cells with the delta values of these organic phosphates determined in model solutions closely simulating intracellular conditions, in which percent binding was directly evaluated by membrane ultrafiltration. The results showed that the percent of bound 2,3-diphosphoglycerate in intact cells varied with pH, the state of oxygenation, and 2,3-diphosphoglycerate concentration. The values ranged from 33% in cells incubated with glucose in air at an intracellular pH of 7.2 to 100% in cells incubated with inosine in N2 at a pH of 6.75. At the same 2,3-diphosphoglycerate concentration, a greater percentage of the compound appeared to be bound in erythrocytes than in the closely simulated model system. ATP was not significantly bound to hemoglobin under any condition examined, but appeared to be strongly complexed to Mg2+ inside the erythrocyte. The binding percentages for both 2,3-diphosphoglycerate and ATP in intact cells estimated by 31P NMR spectroscopy were lower than those calculated by others from individual association constants determined for the binding of different ligands to hemoglobin.  相似文献   

12.
Spectrofluorometric techniques were used to quantify NADPH-hemoglobin interactions based on the quenching of NADPH fluorescence upon binding to hemoglobin. Fluorometric titrations were carried out with hemoglobin in varied states and with hemoglobins in which the beta-chain anion site is altered. At pH 6.5 in 0.05 M 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer, NADPH binds with high affinity, Kd = 1.03 microM, to deoxy human hemoglobin tetramers. Lower affinity binding of NADPH occurs as the beta-chain anion-binding site is discharged by increasing the pH. Moreover, the cofactor binds in a 1:1 ratio to deoxy tetramers, inositol hexaphosphate binds competitively, and binding is decreased in hemoglobins whose structural alterations result in decreased effects of 2,3-diphosphoglycerate. The cofactor binds to oxidized (met) hemoglobin with an estimated Kd of 33.3 microM but has little or no affinity for the oxy form. These results indicate that NADPH binds at the beta-chain anion-binding site and can be considered as a fluorescent analog of 2,3-diphosphoglycerate. Fluorescence measurements gave no indication of NADPH binding to deoxygenated ferrous or ferric myoglobin. Reductive processes within the erythrocyte, such as reduction of met hemoglobin and hemoglobin-catalyzed enzymatic reactions, may be affected by the significant binding of the reduced cofactor to both deoxygenated and oxidized hemoglobin. Cofactor-hemoglobin interactions predict a shift in redox potential as red cells become oxygenated, which may account for unexplained oxygen-linked shifts in red cell metabolism.  相似文献   

13.
Bis(3,5-dibromosalicyl)fumarate (I) reacts preferentially with oxyhemoglobin to cross-link the two beta 82 lysine residues within the 2,3-diphosphoglycerate (DPG) binding site and as a result markedly increases the solubility of deoxyhemoglobin S. The cross-link acts by perturbing the acceptor site for Val 6 within the sickle cell fiber (Chatterjee, R., Walder, R. Y., Arnone, A., and Walder, J. A. (1982) Biochemistry 21, 5901-5909). In the present studies we have compared a large number of analogs of I to determine the structural features of the reagent required for specificity and for transport into the red cell. Both electrostatic and hydrophobic interactions contribute to the binding of these compounds at the DPG site. The optimal position for the negatively charged groups on the cross-linking agent for productive binding is adjacent to the ester as in the original salicylic acid derivatives. There is a direct correlation between the reactivity toward hemoglobin and the hydrophobicity of the substituent attached at the para position. Phenyl and substituted phenyl derivatives as in the analgesic, antiinflammatory drug diflunisal are particularly effective. These groups probably interact with hydrophobic residues of the amino-terminal tripeptide and the EF corner of the beta chains adjacent to the DPG binding site. Although bis(3,5-dibromosalicyl)fumarate is very reactive toward hemoglobin in solution, it is much less effective in modifying hemoglobin within the red cell. The reaction with intracellular hemoglobin was shown to be limited by competing hydrolysis of the reagent catalyzed at the outer surface of the erythrocyte membrane. Inactivation of the red cell membrane acetylcholinesterase with phenylmethylsulfonyl fluoride did not inhibit this reaction. Introduction of a single methyl group onto the carbon-carbon double bond of the fumaryl moiety decreases the lability of the ester 10-fold, due to steric effects, and allows the reagent to be taken up by the red cell and modify intracellular hemoglobin. The kinetics of transport of the methylfumarate derivative, bis(3,5-dibromosalicyl)mesaconate, are first-order, consistent with passive diffusion. The attachment of larger alkyl groups onto the cross-link bridge further enhances the transport of the reagent into the red cell. The solubility of deoxyhemoglobin S cross-linked with the butylfumarate derivative was found to be increased by almost 10% compared to the original fumarate diester.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
P Schuck  D Schubert 《FEBS letters》1991,293(1-2):81-84
The associations between the band 3 protein of the human erythrocyte membrane and oxyhemoglobin, in solutions of a nonionic detergent, were studied by sedimentation equilibrium experiments in the analytical ultracentrifuge. The following results were obtained: (i) hemoglobin is bound virtually exclusively to the band 3 tetramer, but not to the monomer or dimer; (ii) the band 3 tetramer can bind up to four hemoglobin tetramers; (iii) unlike the unstable dimers of unmodified band 3, stable dimers crosslinked via S-S-bridges also represent hemoglobin binding sites.  相似文献   

15.
Deoxyhemoglobin tetramers dissociate into dimers very slowly, with half-times on the order of several hours. It is demonstrated that absorbance changes in the Soret region which accompany this dissociation and persist upon binding of haptoglobin 1-1 to the dissociated dimers can be used for accurate kinetic determinations over the necessarily long periods required for study. This method of study for the slow reactions depends upon long-term spectral integrity of the reaction mixtures and upon accurate measurement. The variation in rate constants determined by this procedure has been correlated with variations in structural constraints at the dimer-dimer contact region. In the presence of 2,3-diphosphoglycerate the rate constant is decreased, consistent with the role of this effector in binding to both beta chains and stabilizing the constrained deoxy tetramer against dissociation into alphabeta dimers. With hemoglobin specifically modified (des-Arg-141alpha) to eliminate half the constraining salt links within the dimer-dimer contact region, the dissociation rate is increased by approximately three orders of magnitude. In hemoglobin S where the amino acid substitution is not directly in the intersubunit contact region of interest, the dissociation rate is found to be approximately the same as that for hemoglobin A. Combination of the dissociation rate constants determined by haptoglobin binding with stopped-flow determinations of the rate constant for reassociation of dissociated dimers provides an estimate of the equilibrium constant, 0K2, for the deoxyhemoglobin dimer-tetramer equilibrium. This estimate is independent of any assumptions regarding other energetic quantities, and yields a value of 2.54 +/- 0.7 X 10(10)M-1 (heme) in 0.1 M Tris-HCl, 0.1 M NaCl, and 1 mM EDTA, pH 7.4, 21.5 degrees C. Thus the intersubunit contact energy is -14.0 +/- 0.2 kcal/mol of heme. The stabilization energy between deoxy and oxy tetramers is found to be approximately 6.4 kcal/mol, under these conditions.  相似文献   

16.
Using improved selective excitation methods for protein nuclear magnetic resonance (NMR), we have conducted measurements of the oxygenation of hemoglobin inside intact human red blood cells. The selective excitation methods use pulse shape-insensitive suppression of the water signal, while producing uniform phase excitation in the region of interest and, thus, are suitable for a wide variety of applications in vivo. We have measured the areas of 1H-NMR resonances of the hyperfine-shifted, exchangeable N delta H protons of the proximal histidine residues of the alpha- and beta-chains in deoxyhemoglobin (63 and 76 ppm downfield from the proton resonance of 2,2-dimethyl-2-silapentane-5-sulfonate (DSS), respectively), which are sensitive to the paramagnetic state of the iron, and for which the alpha- and beta-chain resonances are resolved, and from the ring current-shifted gamma 2-CH3 protons of the distal valine residues in oxyhemoglobin (2.4 ppm upfield from DSS), which are sensitive to the conformation of the heme pocket in the oxy state. We have found that the proximal histidine resonances are directly correlated with the degree of oxygenation of hemoglobin, whereas the distal valine resonances appear to be correlated with the conformation in the heme pocket that occurs after the binding of oxygen, in both the presence and absence of 2,3-diphosphoglycerate. In addition, from the proximal histidine resonances, we have observed a preference for the binding of oxygen to the alpha-chain (up to about 10%) of hemoglobin over the beta-chain in both the presence and absence of 2,3-diphosphoglycerate. These new results obtained in intact erythrocytes are consistent with our previous 1H-NMR studies on purified human normal adult hemoglobin. A unique feature of our 1H-NMR method is the ability to monitor the binding of oxygen specifically to the alpha- and beta-chains of hemoglobin both in solution and in intact red blood cells. This information is essential to our understanding of the molecular basis for the hemoglobin molecule serving as the oxygen carrier in vertebrates.  相似文献   

17.
Under physiological conditions of pH (7.4) and chloride concentration (0.15 M), the oxygen affinity of bovine hemoglobin is substantially lower than that of human hemoglobin. Also, the Bohr effect is much more pronounced in bovine hemoglobin. Numerical simulations indicate that both phenomena can be explained by a larger preferential binding of chloride ions to deoxyhemoglobin in the bovine system. Also, they show that the larger preferential binding may be produced by a decreased affinity of the anions for oxyhemoglobin, thereby stressing the potential relevance of the oxy conformation in regulating the functional properties of the protein. The conformation of the amino-terminal end of the beta subunits appears to regulate the interaction of hemoglobin with solvent components. The pronounced sensitivity of the oxygen affinity of bovine hemoglobin to chloride concentration and to pH suggests that in bovine species these are the modulators of oxygen transport in vivo.  相似文献   

18.
19.
This study was undertaken to test the symmetry of 2,3-diphosphoglycerate (2,3-DPG) binding site in hemoglobin (Hb). From Arnone's study [A. Arnone, Nature (London) 237 (1972) 146] the 2,3-DPG binding site is located at the top of the cavity, that runs through the center of the deoxy-Hb molecule. However, it is possible that this symmetry reported by Arnone, for crystals of 2,3-DPG-Hb complex, might not be conserved in solution. In this paper, we report the 31P nuclear magnetic resonances of the 2,3-DPG interaction with Hb. The 2,3-DPG chemical shifts of the P2 and P3 resonance are both pH- and hemoglobin-dependent [protein from man, polar bear (Ursus maritimus), Arctic fox (Alopex lagopus) and bovine]. 2,3-DPG binds tightly to deoxyhemoglobin and weakly, nevertheless significantly, to oxyhemoglobin. In particular, our results suggest similar spatial position of the binding site of 2,3-DPG in both forms of Hb in solutions. However, the most unexpected result was the apparent loss of symmetry in the binding site, which might correlate with the ability of the hemoglobin to modulate its functional behavior. The different interactions of the phosphate groups indicate small differences in the quaternary structure of the different deoxy forms of hemoglobin. Given the above structural perturbation an asymmetric binding in the complex could justify, at least in part, different physiological properties of Hb. Regardless, functionally relevant effects of 2,3-DPG seem to be measured and best elucidated through solution studies.  相似文献   

20.
Absolute 31P-NMR measurements of ATP, ADP and 2,3-diphosphoglycerate (2,3-DPG) in oxygenated and partly deoxygenated human erythrocytes, compared to measurements by standard assays after acid extraction, show that ATP is only 65% NMR visible, ADP measured by NMR is unexpectedly 400% higher than the enzymatic measurement and 2,3-DPG is fully NMR visible, regardless of the degree of oxygenation. These results show that binding to hemoglobin is unlikely to cause the decreased visibility of ATP in human erythrocytes as deoxyhemoglobin binds the phosphorylated metabolites more tightly than oxyhemoglobin. The high ADP visibility is unexplained. The levels of free Mg2+ [( Mg2+]free) in human erythrocytes are 225 mumol/l at an oxygen saturation of 98.6% and instead of the expected increase, the level decreased to 196 mumol/l at an oxygen saturation of 38.1% based on the separation between the alpha- and beta-ATP peaks. [Mg2+]free in the erythrocytes decreased to 104 mumol/l at a high 2,3-DPG concentration of 25.4 mmol/l red blood cells (RBC) and a normal ATP concentration of 2.05 mmol/l RBC. By increasing the ATP concentration to 3.57 mmol/l RBC, and with a high 2,3-DPG concentration of 24.7 mmol/l RBC, the 31P-NMR measured [Mg2+]free decreased to 61 mumol/l. These results indicate, that the 31P-NMR determined [Mg2+]free in human erythrocytes, based solely on the separation of the alpha- and beta-ATP peaks, does not give a true measure of intracellular free Mg2+ changes with different oxygen saturation levels. Furthermore the measurement is influenced by the concentration of the Mg2+ binding metabolites ATP and 2,3-DPG. Failure to take these factors into account when interpreting 31P-NMR data from human erythrocytes may explain some discrepancies in the literature regarding [Mg2+]free.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号