首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycerolipid transfer for the building of membranes in plant cells   总被引:5,自引:0,他引:5  
Membranes of plant organelles have specific glycerolipid compositions. Selective distribution of lipids at the levels of subcellular organelles, membrane leaflets and membrane domains reflects a complex and finely tuned lipid homeostasis. Glycerolipid neosynthesis occurs mainly in plastid envelope and endoplasmic reticulum membranes. Since most lipids are not only present in the membranes where they are synthesized, one cannot explain membrane specific lipid distribution by metabolic processes confined in each membrane compartment. In this review, we present our current understanding of glycerolipid trafficking in plant cells. We examine the potential mechanisms involved in lipid transport inside bilayers and from one membrane to another. We survey lipid transfers going through vesicular membrane flow and those dependent on lipid transfer proteins at membrane contact sites. By introducing recently described membrane lipid reorganization during phosphate deprivation and recent developments issued from mutant analyses, we detail the specific lipid transfers towards or outwards the chloroplast envelope.  相似文献   

2.
While lipid droplets have traditionally been considered as inert sites for the storage of triacylglycerols and sterol esters, they are now recognized as dynamic and functionally diverse organelles involved in energy homeostasis, lipid signaling, and stress responses. Unlike most other organelles, lipid droplets are delineated by a half-unit membrane whose protein constituents are poorly understood, except in the specialized case of oleosins, which are associated with seed lipid droplets. Recently, we identified a new class of lipid-droplet associated proteins called LDAPs that localize specifically to the lipid droplet surface within plant cells and share extensive sequence similarity with the small rubber particle proteins (SRPPs) found in rubber-accumulating plants. Here, we provide additional evidence for a role of LDAPs in lipid accumulation in oil-rich fruit tissues, and further explore the functional relationships between LDAPs and SRPPs. In addition, we propose that the larger LDAP/SRPP protein family plays important roles in the compartmentalization of lipophilic compounds, including triacylglycerols and polyisoprenoids, into lipid droplets within plant cells. Potential roles in lipid droplet biogenesis and function of these proteins also are discussed.  相似文献   

3.
The endoplasmic reticulum is the site of synthesis of most glycerophospholipids, neutral lipids and the initial steps of sphingolipid biosynthesis of the secretory pathway. After synthesis, these lipids are distributed within the cells to create and maintain the specific compositions of the other secretory organelles. This represents a formidable challenge, particularly while there is a simultaneous and quantitatively important flux of membrane components stemming from the vesicular traffic of proteins through the pathway, which can also vary depending on the cell type and status. To meet this challenge cells have developed an intricate system of interorganellar contacts and lipid transport proteins, functioning in non-vesicular lipid transport, which are able to ensure membrane lipid homeostasis even in the absence of membrane trafficking. Nevertheless, under normal conditions, lipids are transported in cells by both vesicular and non-vesicular mechanisms. In this review we will discuss the mechanism and roles of vesicular and non-vesicular transport of lipids from the ER to other organelles of the secretory pathway.  相似文献   

4.
Membranes are essential for cells and organelles to function. As membranes are impermeable to most polar and charged molecules, they provide electrochemical energy to transport molecules across and create compartmentalized microenvironments for specific enzymatic and cellular processes. Membranes are also responsible for guided transport of cargoes between organelles and during endo- and exocytosis. In addition, membranes play key roles in cell signaling by hosting receptors and signal transducers and as substrates and products of lipid second messengers. Anionic lipids and their specific interaction with target proteins play an essential role in these processes, which are facilitated by specific lipid-binding domains. Protein crystallography, lipid-binding studies, subcellular localization analyses, and computer modeling have greatly advanced our knowledge over the years of how these domains achieve precision binding and what their function is in signaling and membrane trafficking, as well as in plant development and stress acclimation.

Lipid-binding domains represent essential motifs within proteins that allow them to bind specific lipids in membranes in a spatial and temporal manner for signaling and trafficking purposes.  相似文献   

5.
Intracellular organelles, including endosomes, show differences not only in protein but also in lipid composition. It is becoming clear from the work of many laboratories that the mechanisms necessary to achieve such lipid segregation can operate at very different levels, including the membrane biophysical properties, the interactions with other lipids and proteins, and the turnover rates or distribution of metabolic enzymes. In turn, lipids can directly influence the organelle membrane properties by changing biophysical parameters and by recruiting partner effector proteins involved in protein sorting and membrane dynamics. In this review, we will discuss how lipids are sorted in endosomal membranes and how they impact on endosome functions.It is now well established that membranes along the endocytic and secretory pathway show differences not only in protein but also in lipid composition. For example, lipid gradients exist along the biosynthetic pathway with increasing density of cholesterol and sphingolipids from the endoplasmic reticulum (ER) to the plasma membrane (Maxfield and van Meer 2010). Also, phosphoinositides show distributions restricted to relatively well-characterized membrane territories (Di Paolo and De Camilli 2006). Given the facts that lipids are small and contain little structural information when compared with proteins, that they can diffuse rapidly within membranes, and that membranes are connected by membrane flow during transport, it is not always obvious how different lipids are segregated from each other.In this article, we will evoke different mechanisms that may contribute to the heterogeneous lipid composition of endocytic membranes, including physicochemical properties of the membrane, interactions with other proteins or lipids, and synthesis or degradation. In addition, it has also become apparent that peripheral membrane proteins often interact with membranes via diverse lipid-binding motifs, and thus that lipids directly contribute to the distribution of many peripheral membrane proteins. For example, phosphatidylinositol 3-phosphate (PI(3)P) is detected predominantly on early endosomes, where most characterized PI(3)P-binding proteins encoded by the human genome are found as well (Raiborg et al. 2013). We will also discuss how some lipids may regulate protein sorting and membrane transport within the endosomal system.  相似文献   

6.
We review the cellular mechanisms implicated in cholesterol trafficking and distribution. Recent studies have provided new information about the distribution of sterols within cells, including analysis of its transbilayer distribution. The cholesterol interaction with other lipids and its engagement in various trafficking processes will determine its proper level in a specific membrane; making the cholesterol distribution uneven among the various intracellular organelles. The cholesterol content is important since cholesterol plays an essential role in membranes by controlling their physicochemical properties as well as key cellular events such as signal transduction and protein trafficking. Cholesterol movement between cellular organelles is highly dynamic, and can be achieved by vesicular and non-vesicular processes. Various studies have analyzed the proteins that play a significant role in these processes, giving us new information about the relative importance of these two trafficking pathways in cholesterol transport. Although still poorly characterized in many trafficking routes, several potential sterol transport proteins have been described in detail; as a result, molecular mechanisms for sterol transport among membranes start to be appreciated.  相似文献   

7.
Intracellular trafficking is not mediated exclusively by vesicles. Additional, non-vesicular mechanisms transport material, in particular small molecules such as lipids and Ca(2+) ions, from one organelle to another. This transport occurs at narrow cytoplasmic gaps called membrane contact sites (MCSs), at which two organelles come into close apposition. Despite the conservation of these structures throughout evolution, little is known about this transport, largely because of a lack of knowledge of almost all molecular components of MCSs. Recently, this situation has started to change because the structural proteins that bridge an MCS are now known in a single case, and proteins implicated in lipid trafficking have been localized to MCSs. In the light of these advances, I hypothesize that the endoplasmic reticulum has a central role in the trafficking of lipids and ions by forming a network of MCSs with most other intracellular organelles.  相似文献   

8.
Protein S‐acylation, also known as palmitoylation, consists of the addition of a lipid molecule to one or more cysteine residues through a thioester bond. This modification, which is widespread in eukaryotes, is thought to affect over 12% of the human proteome. S‐acylation allows the reversible association of peripheral proteins with membranes or, in the case of integral membrane proteins, modulates their behavior within the plane of the membrane. This review focuses on the consequences of protein S‐acylation on intracellular trafficking and membrane association. We summarize relevant information that illustrates how lipid modification of proteins plays an important role in dictating precise intracellular movements within cells by regulating membrane‐cytosol exchange, through membrane microdomain segregation, or by modifying the flux of the proteins by means of vesicular or diffusional transport systems. Finally, we highlight some of the key open questions and major challenges in the field.   相似文献   

9.
Mitochondria are partially autonomous organelles that depend on the import of certain proteins and lipids to maintain cell survival and membrane formation. Although phosphatidylglycerol, cardiolipin, and phosphatidylethanolamine are synthesized by mitochondrial enzymes, phosphatidylcholine, phosphatidylinositol, phosphatidylserine, and sterols need to be imported from other organelles. The origin of most lipids imported into mitochondria is the endoplasmic reticulum, which requires interaction of these two subcellular compartments. Recently, protein complexes that are involved in membrane contact between endoplasmic reticulum and mitochondria were identified, but their role in lipid transport is still unclear. In the present review, we describe components involved in lipid translocation between the endoplasmic reticulum and mitochondria and discuss functional as well as regulatory aspects that are important for lipid homeostasis.Biological membranes are major structural components of all cell types. They protect the cell from external influences, organize the interior in distinct compartments and allow balanced flux of components. Besides their specific proteome, organelles exhibit unique lipid compositions, which influence their shape, physical properties, and function. Major lipid classes found in biological membranes are phospholipids, sterols, and sphingolipids.The major “lipid factory” within the cell is the endoplasmic reticulum (ER). It is able to synthesize the bulk of structural phospholipids, sterols, and storage lipids such as triacylglycerols and steryl esters (van Meer et al. 2008). Furthermore, initial steps of ceramide synthesis occur in the ER providing precursors for the formation of complex sphingolipids in other organelles (Futerman 2006). Besides the export of ceramides, the ER supplies a large portion of lipids to other organelles, which cannot produce their own lipids or have a limited capacity to do so. Organelle interaction and transport of lipids require specific carrier proteins, membrane contact sites, tethering complexes, and/or vesicle flux. These processes are highly important for the maintenance of cell structure and survival but are still a matter of dispute. Most prominent organelle interaction partners are the ER and mitochondria. A subfraction of the ER named mitochondria-associated membrane (MAM) (Vance 1990) was described to be involved in lipid translocation to mitochondria. MAM is part of the ER network, which was shown to be in contact or close proximity to the outer mitochondrial membrane (OMM). Contact sites between MAM and mitochondria were assumed to facilitate exchange of components between the two compartments. Interestingly, MAM harbor a number of lipid synthesizing enzymes (Gaigg et al. 1994). Recently, molecular components governing membrane contact between the two organelles were identified (Dolman et al. 2005; Csordás et al. 2006; de Brito and Scorrano 2008; Kornmann et al. 2009; Friedman et al. 2010; Lavieu et al. 2010), although the specific role of these components in lipid translocation is not yet clear.  相似文献   

10.
Zymogen granules (ZGs) are specialized storage organelles in the exocrine pancreas, which allow digestive enzyme storage and regulated apical secretion. To understand the function of these important organelles, we are conducting studies to identify and characterize ZG membrane proteins. Small guanosine triphosphatases (GTPases) of the Rab family are key protein components involved in vesicular/granular trafficking and membrane fusion in eukaryotic cells. In this study, we show by morphological studies that Rab8 (Rab8A) localizes to ZGs in acinar cells of the pancreas. We find that Rab8 is present on isolated ZGs from rat pancreas and in the ZG membrane fraction obtained after granule subfractionation. To address a putative role of Rab8 in granule biogenesis, we conducted RNA interference experiments to 'knock down' the expression of Rab8 in pancreatic AR42J cells. Silencing of Rab8 (but not of Rab3) resulted in a decrease in the number of ZGs and in an accumulation of granule marker proteins within the Golgi complex. By contrast, the trafficking of lysosomal and plasma membrane proteins was not affected. These data provide first evidence for a role of Rab8 early on in ZG formation at the Golgi complex and thus, apical trafficking of digestive enzymes in acinar cells of the pancreas.  相似文献   

11.
Membrane contact sites, where two organelles are in close proximity, are critical regulators of cellular membrane homeostasis, with roles in signaling, lipid metabolism, and ion dynamics. A growing catalog of specialized lipid transfer proteins carry out lipid exchange at these sites. Currently characterized eukaryotic lipid transport proteins are shuttles that typically extract a single lipid from the membrane of the donor organelle, solubilize it during transport through the cytosol, and deposit it in the acceptor organelle membrane. Here, we highlight the recently identified chorein_N family of lipid transporters, including the Vps13 proteins and the autophagy protein Atg2. These are elongated proteins that, distinct from previously characterized transport proteins, bind tens of lipids at once. They feature an extended channel, most likely lined with hydrophobic residues. We discuss the possibility that they are not shuttles but instead are bridges between membranes, with lipids traversing the cytosol via the hydrophobic channel.  相似文献   

12.
We studied the trafficking of sterols, lipids and proteins in Niemann-Pick type C (NPC) cells. The NPC is an inherited disorder involving the accumulation of sterol and lipids in modified late-endosome/lysosome-like storage organelles. Most sterol accumulation studies in NPC cells have been carried out using low-density lipoprotein (LDL) as the sterol source, and it has been shown that sterol efflux from late endosomes is impaired in NPC cells. In this study, we used a fluorescent sterol analog, dehydroergosterol, which can be quickly and efficiently delivered to the plasma membrane. Thus, we were able to study the trafficking kinetics of the non-LDL-derived sterol pool, and we found that dehydroergosterol accumulates in the storage organelles over the course of several hours in NPC cells. We also found that dialkylindocarbocyanine lipid-mimetic analogs that recycle efficiently from early endosomes in wild-type cells are targeted to late endosomal organelles in NPC cells, and transferrin receptors recycle slowly and inefficiently in NPC cells. These data are consistent with multiple trafficking defects in both early and late endosomes in NPC cells.  相似文献   

13.
The processes involved in sexual reproduction have been diversified during plant evolution. Whereas charales, bryophytes, pteridophytes, and some gymnosperms utilize motile sperm as male gametes, in other gymnosperms and angiosperms the immotile sperm cells are delivered to the egg cells through elongated pollen tubes. During formation of the motile sperms, cells undergo a dynamic morphological transformation including drastic changes in shape and the generation of locomotor architecture. The molecular mechanism involved in this process remains mostly unknown. Membrane trafficking fulfills the exchange of various proteins and lipids among single membrane-bound organelles in eukaryotic cells, contributing to various biological functions. RAB GTPases and SNARE proteins are evolutionarily conserved key machineries of membrane trafficking mechanisms, which regulate tethering and fusion of the transport vesicles to target membranes. Our observation of fluorescently tagged plasma membrane-resident SNARE proteins demonstrated that these proteins relocalize to spherical structures during the late stages in spermiogenesis. Similar changes in subcellular localization were also observed for other fluorescently tagged SNARE proteins and a RAB GTPase, which acts on other organelles including the Golgi apparatus and endosomes. Notably, a vacuolar SNARE, MpVAMP71, was localized on the membrane of the spherical structures. Electron microscopic analysis revealed that there are many degradation-related structures such as multi-vesicular bodies, autophagosomes, and autophagic bodies containing organelles. Our results indicate that the cell-autonomous degradation pathway plays a crucial role in the removal of membrane components and the cytoplasm during spermiogenesis of Marchantia polymorpha. This process differs substantially from mammalian spermatogenesis in which phagocytic removal of excess cytoplasm involves neighboring cells.  相似文献   

14.
The endoplasmic reticulum (ER) is a highly organized organelle that performs vital functions including de novo membrane lipid synthesis and transport. Accordingly, numerous lipid biosynthesis enzymes are localized in the ER membrane. However, it is now evident that lipid metabolism is sub-compartmentalized within the ER and that lipid biosynthetic enzymes engage with lipid transfer proteins (LTPs) to rapidly shuttle newly synthesized lipids from the ER to other organelles. As such, intimate relationships between lipid metabolism and lipid transfer pathways exist within the ER network. Notably, certain LTPs enhance the activities of lipid metabolizing enzymes; likewise, lipid metabolism can ensure the specificity of LTP transfer/exchange reactions. Yet, our understanding of these mutual relationships is still emerging. Here, we highlight past and recent key findings on specialized ER membrane domains involved in efficient lipid metabolism and transport and consider unresolved issues in the field.  相似文献   

15.
The elaborate compartmentalization of plant cells requires multiple mechanisms of protein targeting and trafficking. In addition to the organelles found in all eukaryotes, the plant cell contains a semi-autonomous organelle, the plastid. The plastid is not only the most active site of protein transport in the cell, but with its three membranes and three aqueous compartments, it also represents the most topologically complex organelle in the cell. The chloroplast contains both a protein import system in the envelope and multiple protein export systems in the thylakoid. Although significant advances have identified several proteinaceous components of the protein import and export apparatuses, the lipids found within plastid membranes are also emerging as important players in the targeting, insertion, and assembly of proteins in plastid membranes. The apparent affinity of chloroplast transit peptides for chloroplast lipids and the tendency for unsaturated MGDG to adopt a hexagonal II phase organization are discussed as possible mechanisms for initiating the binding and/or translocation of precursors to plastid membranes. Other important roles for lipids in plastid biogenesis are addressed, including the spontaneous insertion of proteins into the outer envelope and thylakoid, the role of cubic lipid structures in targeting and assembly of proteins to the prolamellar body, and the repair process of D1 after photoinhibition. The current progress in the identification of the genes and their associated mutations in galactolipid biosynthesis is discussed. Finally, the potential role of plastid-derived tubules in facilitating macromolecular transport between plastids and other cellular organelles is discussed.  相似文献   

16.
COPII proteins facilitate membrane transport from the endoplasmic reticulum (ER) to the Golgi. They are highly conserved, although there are variations in their subcellular localization across plant, animal and yeast cells. Such variations may be needed to suit the unique organization of the ER and Golgi in the different cell systems. Earlier bioinformatics analyses have indicated that the Arabidopsis nuclear genome may encode chloroplast isoforms of the cytosolic trafficking protein machineries, including COPI and COPII, for vesicular transport within chloroplasts. These analyses suggest the intriguing possibility that plants may have evolved or adapted COP-like proteins to suit membrane trafficking events within specialized organelles. Here, we discuss recent data on the distribution and activity of the product of the At5g18570 locus, which encodes a putative chloroplast isoform of Sar1, the GTPase that regulates COPII assembly on the surface of the ER. Evidence is accumulating that the protein is targeted to the chloroplasts, that it has GTPase activity and that it may have a role in thylakoid membrane development, supporting the possibility that COPII-like trafficking machinery may be active in chloroplasts.  相似文献   

17.
Lipid metabolism and regulation of membrane trafficking   总被引:7,自引:0,他引:7  
The past 20 years have witnessed tremendous progress in our understanding of the molecular machinery that controls protein and membrane transport between organelles (Scheckman R, Orci L. Coat proteins and vesicle budding. Science 1996;271: 1526–1533 and Rothman JE. Mechanisms of intracellular protein transport. Nature 1994;372: 55–63.) The research efforts responsible for these impressive advances have largely focused on the identification and characterization of protein factors that participate in membrane trafficking events. The role of membranes and their lipid constituents has received considerably less attention. Indeed, until rather recently, popular models for mechanisms of membrane trafficking had relegated membrane lipids to the status of a passive platform, subject to deformation by the action of coat proteins whose polymerization and depolymerization govern vesicle budding and fusion reactions. The 1990s, and particularly its last half, has brought fundamental reappraisals of the interface of lipids and lipid metabolism in regulating intracellular membrane trafficking events. Some of the emerging themes are reviewed here.  相似文献   

18.
线粒体是一种由两层膜包被的细胞器,其功能和结构的稳定性取决于线粒体膜上精确的磷脂组成及分布。线粒体膜上的大部分脂类物质由内质网合成,既而转运到线粒体。而部分脂类利用内质网上产生的前体,在线粒体内膜上合成。由此可见,线粒体膜脂的生物合成需要线粒体与内质网以及线粒体外膜(outer mitochondrial membrane, OMM)与内膜(inner mitochondrial membrane, IMM)之间进行大量的脂质转运。目前认为,这种运输过程既可在拴系因子(tether factors)形成的膜结合部位(membrane contact sites, MCSs)内发生,也可借助脂质转运蛋白(lipid transfer proteins, LTPs)完成。近年来,研究者以酵母为对象,建立了多种线粒体磷脂转运(phospholipid trafficking)的模型,这使人们初步理解了线粒体磷脂转运的机制。本综述总结了酵母线粒体磷脂转运的最新发现,并对这些磷脂转运的模型进行了讨论,以期为今后深入了解线粒体脂类代谢提供参考。  相似文献   

19.
Protein trafficking in plant cells   总被引:2,自引:1,他引:1       下载免费PDF全文
The cells of higher plants contain distinct subcellular compartments (organelles) that perform specialized functions such as photosynthesis, carbohydrate and lipid metabolism, and so forth. The majority of the protein constituents of plant organelles are formed as cytosolic precursors with N-terminal extensions that direct transport across one or more membrane bilayers in a post- or co-translational fashion. Since the majority of proteins in plant cells are products of nuclear gene expression, there must be precise sorting mechanisms in the cytoplasm that direct proteins to their correct cellular locations. Based on recent studies of protein targeting to chloroplasts and vacuoles, the details of these intracellular sorting mechanisms are becoming clear. The ability to direct proteins to specific compartments within cells provides new opportunities for improvement of plants by genetic manipulation.  相似文献   

20.
Lipid transport proteins at membrane contact sites, where two organelles are closely apposed, play key roles in trafficking lipids between cellular compartments while distinct membrane compositions for each organelle are maintained. Understanding the mechanisms underlying non‐vesicular lipid trafficking requires characterization of the lipid transporters residing at contact sites. Here, we show that the mammalian proteins in the lipid transfer proteins anchored at a membrane contact site (LAM) family, called GRAMD1a‐c, transfer sterols with similar efficiency as the yeast orthologues, which have known roles in sterol transport. Moreover, we have determined the structure of a lipid transfer domain of the yeast LAM protein Ysp2p, both in its apo‐bound and sterol‐bound forms, at 2.0 Å resolution. It folds into a truncated version of the steroidogenic acute regulatory protein‐related lipid transfer (StART) domain, resembling a lidded cup in overall shape. Ergosterol binds within the cup, with its 3‐hydroxy group interacting with protein indirectly via a water network at the cup bottom. This ligand binding mode likely is conserved for the other LAM proteins and for StART domains transferring sterols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号