首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Our phylogenetic analysis of three endemic species of the Australian tiger beetle genus Pseudotetracha (Fleutiaux, 1864) from South Australia used sequences of two fragments of the mitochondrial genes 16S rRNA and cytochrome oxidase III. A matrix for each gene and two combined matrices were constructed. We compared these three riparian species, together with data from nine taxa of this genus available in GenBank, using parsimony and Bayesian methods. These molecular results are in agreement with the phylogenetic hypothesis for the blackburni/murchisona species complex previously proposed based on morphology, whereas other recent molecular analyses have questioned the existence of this species complex. In all of our analyses, samples of P. blackburni divided into two statistically supported clades, one of which is more closely related to P. mendacia and P. pulchra than to the other P. blackburni clade. This suggests the existence of a cryptic new species. Additionally, we analysed chromosomes of the second metaphase cells of members of the two clades. The observations showed different karyotypes as blackburni‐1 has two types of second meiotic metaphase cells with 11 and 12 chromosomes, whereas in blackburni‐2, all cells have 12 chromosomes, adding evidence for the putative existence of two species.  相似文献   

2.
Abstract Several studies have indicated that the green lacewing, Chrysoperla nipponensis (Neuroptera: Chrysopidae) may include more than one valid species. We investigated the phylogenetic status of Chrysoperla nipponensis s.l. in China and Japan using mitochondrial sequences and AFLP data. The molecular phylogenetic analyses based on mitochondrial genes showed that the C. nipponensis species‐complex comprises four clades, each having high support values. In addition, the phylogenetic tree based on AFLP data indicates that the species‐complex comprises three groups. These results confirm that C. nipponensis s.l. comprises at least three genetically distinct clades and suggests that two of these clades may be closely related to populations of C. nipponensis in Japan. However, these clades cannot be recognized as species until analysis of their courtship songs has been completed.  相似文献   

3.
Genetic markers are often used to trace the geographical origin of migrating birds. Such an approach has been used to attribute individuals of a given species to a given population, but it could also be applied to cryptic species, which are not fully diagnosable on the basis of their morphological appearance alone, despite often being genetically distinct. We sampled migrants of the Sylvia cantillans complex, which include cryptic taxa not readily identified on the basis of their appearance, at spring stopover sites in the central Mediterranean. We identified these individuals taxonomically using mitochondrial DNA sequence data. Molecular analyses enabled us to establish that four different taxa/clades of the Sylvia cantillans complex (two S. c. cantillans clades, S. c. albistriata and S. subalpina) migrate through the central‐western Mediterranean from Africa.  相似文献   

4.
Abstract. We estimated the phylogeny of the order Odonata, based on sequences of the nuclear ribosomal genes 5.8 S, 18S, and ITS1 and 2. An 18S‐only analysis resolved deep relationships well: the order Odonata, as well as suborders Zygoptera and Epiprocta (Anisoptera + Epiophlebia), emerged as monophyletic. Some other deep clades resolved well, but support for more recently diverged clades was generally weak. A second, simultaneous, analysis of the 5.8S and 18S genes with the intergenic spacers ITS1 and 2 resolved some recent branches better, but appeared less reliable for deep clades with, for example, suborder Anisoptera emerging as paraphyletic and Epiophlebia superstes recovered as an Anisopteran, embedded within aeshnoid‐like anisopterans and sister to the cordulegastrids. Most existing family levels in the Anisoptera were confirmed as monophyletic clades in both analyses. However, within the corduliids that form a major monophyletic clade with the Libellulidae, several subclades were recovered, of which at least Macromiidae and Oxygastridae are accepted at the family level. In the Zygoptera, the situation is complex. The lestid‐like family groups (here called Lestomorpha) emerged as sister taxon to all other zygopterans, with Hemiphlebia sister to all other lestomorphs. Platystictidae formed a second monophylum, subordinated to lestomorphs. At the next level, some traditional clades were confirmed, but the tropical families Megapodagrionidae and Amphipterygidae were recovered as strongly polyphyletic, and tended to nest within the clade Caloptera, rendering it polyphyletic. Platycnemididae were also non‐monophyletic, with several representatives of uncertain placement. Coenagrionids were diphyletic. True Platycnemididae and non‐American Protoneurids are closely related, but their relationship to the other zygopterans remains obscure and needs more study. New World protoneurids appeared relatively unrelated to old world + Australian protoneurids. Several recent taxonomic changes at the genus level, based on morphology, were confirmed, but other morphology‐based taxonomies have misclassified taxa considered currently as Megapodagrionidae, Platycnemididae and Amphipterygidae and have underestimated the number of family‐level clades.  相似文献   

5.
Despite recent molecular systematic studies on the fossorial southern African skink subfamily Acontinae, evolutionary relationships among the three genera remain unresolved and disputed. Among these, the most recent study suggests that both Typhlosaurus and Acontias are paraphyletic, contrasting earlier results that suggest the presence of two divergent clades within Acontias. Here we further investigate the evolutionary relationships in the limbless fossorial southern African subfamily Acontinae with partial sequenced data derived from four mitochondrial loci (16S rRNA, 12S rRNA, cytochrome oxidase I and cytochrome b), as well as two nuclear protein coding loci (c‐mos and RAG‐1), in an attempt to clarify evolutionary relationships. Phylogenetic results derived from combined data analyses (comprising all six loci and totalling ~3.1 kb) using maximum parsimony, maximum likelihood and Bayesian inferences converged on the same topology. The resulting phylogeny showed Typhlosaurus as monophyletic, while the monotypic genus Acontophiops was nested intermediate to two reciprocally monophyletic Acontias clades. These two Acontias clades can be distinguished on the basis of a number of morphological, morphometric and biogeographical characters, underscoring the presence of two distinct groups. In the present study, we propose the following taxonomic changes based on the multilocus phylogeny. We retain the genus name Acontias for the medium‐ and large‐bodied skinks in clade 2 comprising all taxa in the Acontias meleagris complex as well as Acontias plumbeus, Acontias gracilicauda gracilicauda, Acontias breviceps, Acontias percivali percivali and Acontias percivali occidentalis. We designate a new genus Microacontias gen. nov. for the reciprocally monophyletic taxa in clade 1 comprised of all the small‐bodied taxa that include Microacontias litoralis, Microacontias lineatus lineatus, Microacontias lineatus grayi and Microacontias lineatus tristis. We examine the evolution of characters used in the taxonomy of the Acontinae and suggest that symplesiomorphic morphological characters among fossorial taxa have been an impediment to understanding the evolution of this subfamily. This study underscores the importance of the application of multiple molecular markers (both nuclear and mitochondrial) in determining the taxonomic diversity among fossorial skinks and emphasizes the application of phylogenetics in defining synapomorphic (shared derived) features.  相似文献   

6.
Orthoptera have been used for decades for numerous evolutionary questions but several of its constituent groups, notably crickets, still suffer from a lack of a robust phylogenetic hypothesis. We propose the first phylogenetic hypothesis for the evolution of crickets sensu lato, based on analysis of 205 species, representing 88% of the subfamilies and 71% tribes currently listed in the database Orthoptera Species File (OSF). We reconstructed parsimony, maximum likelihood and Bayesian phylogenies using fragments of 18S, 28SA, 28SD, H3, 12S, 16S, and cytb (~3600 bp). Our results support the monophyly of the cricket clade, and its subdivision into two clades: mole crickets and ant‐loving crickets on the one hand, and all the other crickets on the other (i.e. crickets sensu stricto). Crickets sensu stricto form seven monophyletic clades, which support part of the OSF families, “subfamily groups”, or subfamilies: the mole crickets (OSF Gryllotalpidae), the scaly crickets (OSF Mogoplistidae), and the true crickets (OSF Gryllidae) are recovered as monophyletic. Among the 22 sampled subfamilies, only six are monophyletic: Gryllotalpinae, Trigonidiinae, Pteroplistinae, Euscyrtinae, Oecanthinae, and Phaloriinae. Most of the 37 tribes sampled are para‐ or polyphyletic. We propose the best‐supported clades as backbones for future definitions of familial groups, validating some taxonomic hypotheses proposed in the past. These clades fit variously with the morphological characters used today to identify crickets. Our study emphasizes the utility of a classificatory system that accommodates diagnostic characters and monophyletic units of evolution. Moreover, the phylogenetic hypotheses proposed by the present study open new perspectives for further evolutionary research, especially on acoustic communication and biogeography.  相似文献   

7.
Aim Rain forest‐restricted plant families show disjunct distributions between the three major tropical regions: South America, Africa and Asia. Explaining these disjunctions has become an important challenge in biogeography. The pantropical plant family Annonaceae is used to test hypotheses that might explain diversification and distribution patterns in tropical biota: the museum hypothesis (low extinction leading to steady accumulation of species); and dispersal between Africa and Asia via Indian rafting versus boreotropical geodispersal. Location Tropics and boreotropics. Methods Molecular age estimates were calculated using a Bayesian approach based on 83% generic sampling representing all major lineages within the family, seven chloroplast markers and two fossil calibrations. An analysis of diversification was carried out, which included lineage‐through‐time (LTT) plots and the calculation of diversification rates for genera and major clades. Ancestral areas were reconstructed using a maximum likelihood approach that implements the dispersal–extinction–cladogenesis model. Results The LTT plots indicated a constant overall rate of diversification with low extinction rates for the family during the first 80 Ma of its existence. The highest diversification rates were inferred for several young genera such as Desmopsis, Uvariopsis and Unonopsis. A boreotropical migration route was supported over Indian rafting as the best fitting hypothesis to explain present‐day distribution patterns within the family. Main conclusions Early diversification within Annonaceae fits the hypothesis of a museum model of tropical diversification, with an overall steady increase in lineages possibly due to low extinction rates. The present‐day distribution of species within the two largest clades of Annonaceae is the result of two contrasting biogeographic histories. The ‘long‐branch clade’ has been diversifying since the beginning of the Cenozoic and underwent numerous geodispersals via the boreotropics and several more recent long‐distance dispersal events. In contrast, the ‘short‐branch clade’ dispersed once into Asia via the boreotropics during the Early Miocene and further dispersal was limited.  相似文献   

8.
In this study, we used sequences of two mitochondrial genes, cytochrome c oxidase I (COI) and 16S rRNA, and one nuclear gene, 28S rRNA, to test the monophyly of the sea star genus Echinaster, and understand the phylogenetic relationships among species and subgenera within this genus. Phylogenetic analyses based on Bayesian inference and maximum likelihood methods revealed three clades with high values of genetic divergence among them (K2P distances for COI over 23%). One of the clades grouped all Echinaster (Othilia) species, and the other two clades included Echinaster (non‐Othilia) species and Henricia species, respectively. Although the relationships among Henricia, Othilia, and Echinaster could not be completely clarified, the Othilia clade was a well‐supported group with shared diagnostic morphological characters. Moreover, the approximately unbiased test applied to the phylogenetic reconstruction rejected the hypothesis of the genus Echinaster as a monophyletic group. According to these results, we suggest the revalidation of Othilia as a genus instead of a subgenus within Echinaster. Our study clarifies important points about the phylogenetic relationships among species of Echinaster. Other important systematic questions about the taxonomic classification of Echinaster and Henricia still remain open, but this molecular study provides bases for future research on the topic.  相似文献   

9.
The cellulose synthase (CESA) gene family of seed plants comprises six clades that encode isoforms with conserved expression patterns and distinct functions in cellulose synthesis complex (CSC) formation and primary and secondary cell wall synthesis. In mosses, which have rosette CSCs like those of seed plants but lack lignified secondary cell walls, the CESA gene family diversified independently and includes no members of the six functionally distinct seed plant clades. There are seven CESA isoforms encoded in the genome of the moss Physcomitrella patens. However, only PpCESA5 has been characterised functionally, and little information is available on the expression of other PpCESA family members. We have profiled PpCESA expression through quantitative RT‐PCR, analysis of promoter‐reporter lines, and cluster analysis of public microarray data in an effort to identify expression and co‐expression patterns that could help reveal the functions of PpCESA isoforms in protein complex formation and development of specific tissues. In contrast to the tissue‐specific expression observed for seed plant CESAs, each of the PpCESAs was broadly expressed throughout most developing tissues. Although a few statistically significant differences in expression of PpCESAs were noted when some tissues and hormone treatments were compared, no strong co‐expression patterns were observed. Along with CESA phylogenies and lack of single PpCESA mutant phenotypes reported elsewhere, broad overlapping expression of the PpCESAs indicates a high degree of inter‐changeability and is consistent with a different pattern of functional specialisation in the evolution of the seed plant and moss CESA families.  相似文献   

10.
Divergent mate preferences and subsequent genetic differentiation between populations has been demonstrated, but its effects on interspecific interactions are unknown. Associated species exploiting these mate preferences, for example, may diverge to match local preferences. We explore this idea in the sexually deceptive, fly‐mimicking daisy, Gorteria diffusa, by testing for association between genetic structure in the fly pollinator (a proxy for mate preference divergence) and geographic divergence in floral form. If genetic structure in flies influences interactions with G. diffusa, we expect phylogeographically distinct flies to be associated with different floral forms. Flies associated with forms exploiting only feeding behavior often belonged to several phylogeographic clades, whereas flies associated with forms exploiting male‐mating behavior always belonged to distinct clades, indicating the possibility of pollinator‐mediated floral divergence through phylogeographic variation in mating preferences of male flies. We tested this hypothesis with reciprocal presentations using male flies from distinct clades associated with separate floral forms. Results show that males from all clades exhibit similar preferences, making pollinator driven divergence through geographic variation in mate preference unlikely. Males, however, showed evidence of learned resistance to deceptive traits, suggesting antagonistic interactions between plants and pollinators may drive deceptive floral trait evolution in G. diffusa.  相似文献   

11.
Inferring the evolutionary and ecological processes that have shaped contemporary species distributions using the geographic distribution of gene lineages is the principal goal of phylogeographic research. Researchers in the field have recognized that inferences made from a single gene, often mitochondrial, can be informative regarding the pattern of diversification but lack conclusive information regarding the evolutionary mechanisms that led to the observed patterns. Here, we use a multilocus (20 loci) data set to explore the evolutionary history of the White‐breasted Nuthatch (Sitta carolinensis). A previous single‐locus study found S. carolinensis is comprised of four reciprocally monophyletic clades geographically restricted to the pine and oak forests of: (i) eastern North America, (ii) southern Rocky Mountain and Mexican Mountain ranges, (iii) Eastern Sierra Nevada and Northern Rocky Mountains and (iv) Pacific slope of North America. The diversification of the clades was attributed to the fragmentation of North American pine and oak woodlands in the Pliocene with subsequent divergences owing to the Pleistocene glacial cycles. Principal component, clustering and species tree analyses of the multilocus data resolved the same four groups or lineages found in the single‐locus study. Coalescent analyses and hypothesis testing of nested isolation and migration models indicate that isolation and not gene flow has been the major evolutionary mechanism responsible for shaping genetic variation, and all the divergence events within S. carolinensis have occurred in response to the Pleistocene glacial cycles.  相似文献   

12.
The phylogeographical structure of brown trout Salmo trutta in Britain and Ireland was studied using polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) analysis of four mitochondrial DNA segments (16S/ND1, ND5/6, COXIII/ND5 and ND5/12S). Analysis of 3636 individuals from 83 sites–morphotypes revealed a total of 25 haplotypes. These haplotypes were nested in seven two‐step clades. Although there was a clear geographical patterning to the occurrence of derived clades, admixture among ancestral clades was extensive throughout the studied area. A relevant feature of the data was that some populations contained mixtures of highly divergent clades. This type II phylogeographic pattern is uncommon in nature. Clade intermixing is likely to have taken place during earlier interglacials as well as since the Last Glacial Maximum. The anadromous life history of many S. trutta populations has probably also contributed to clade mixing. Based on the data presented here and published data, postglacial colonization of Britain and Ireland most likely involved S. trutta from at least five potential glacial refuges. Probable locations for such refugia were: south of England–western France, east of the Baltic Sea, western Ireland, Celtic Sea and North Sea. Ferox S. trutta, as defined by their longevity, late maturation and piscivory, exhibited a strong association with a particular clade indicating that they share a common ancestor. Current evidence indicates that the Lough Melvin gillaroo S. trutta and sonaghen S. trutta sympatric types diverged prior to colonization of Lough Melvin and, although limited gene flow has occurred since secondary contact, they have remained largely reproductively isolated due to inlet and outlet river spawning segregation. Gillaroo S. trutta may reflect descendents of a previously more widespread lineage that has declined due to habitat alterations particularly affecting outlet rivers. The mosaic‐like distribution of mtDNA lineages means that conservation prioritization in Britain and Ireland should be based on the biological characteristics of local populations rather than solely on evolutionary lineages.  相似文献   

13.
Speciation and biogeographical patterning in the velvet worm Opisthopatus cinctipes was examined under a null hypothesis that numerous discrete lineages are nested within the species. A total of 184 O. cinctipes specimens, together with a single specimen of each of the two congeneric point endemic sister species (O. roseus and O. herbertorum), were collected throughout the forest archipelago in the Eastern Cape, KwaZulu‐Natal and Mpumalanga provinces of South Africa. All specimens were sequenced for two partial mitochondrial DNA loci (COI and 12S rRNA), while a single specimen from each locality was sequenced for the nuclear 18S rRNA locus. Evolutionary relationships were assessed using maximum‐likelihood and Bayesian inferences, while divergence time estimations were conducted using BEAST. A Bayesian species delimitation approach was undertaken to explore the number of possible novel lineages nested within Opisthopatus, while population genetic structure was examined for the COI locus using ARLEQUIN. Phylogenetic results revealed that O. cinctipes is a species complex comprising seven geographically discrete and statistically well‐supported clades. An independent statistical approach to species delimitations circumscribed ca. 67 species. Results from divergence time estimation and rate constancy tests revealed near constant net diversification occurring throughout the Eocene and Oligocene with subdivision of ranges during the Miocene. Gross morphological characters such as leg pair number within O. cinctipes were invariant, while dorsal and ventral integument colour was highly polymorphic. However, scanning electron microscopy revealed considerable differences both between and within clades. The caveats associated with both morphological and algorithmic delineation of species boundaries are discussed. The five novel Opisthopatus species are described.  相似文献   

14.
Abstract Two alternative hypotheses for the origin of butterflies in the Australian Region, that elements dispersed relatively recently from the Oriental Region into Australia (northern dispersal hypothesis) or descended from ancient stocks in Gondwana (southern vicariance hypothesis), were tested using methods of cladistic vicariance biogeography for the Delias group, a diverse and widespread clade in the Indo‐Australian Region. A phylogenetic hypothesis of the twenty‐four species‐groups recognized currently in Delias and its sister genus Leuciacria is inferred from molecular characters generated from the nuclear gene elongation factor‐1 alpha (EF‐1α) and the mitochondrial genes cytochrome oxidase subunits I and II (COI/COII) and NADH dehydrogenase 5 (ND5). Phylogenetic analyses based on maximum parsimony, maximum likelihood and Bayesian inference of the combined dataset (3888 bp, 1014 parsimony informative characters) confirmed the monophyly of Delias and recovered eight major lineages within the genus, informally designated the singhapura, belladonna, hyparete, chrysomelaena, eichhorni, cuningputi, belisama and nigrina clades. Species‐group relationships within these clades are, in general, concordant with current systematic arrangements based on morphology. The major discrepancies concern the placement of the aganippe, belisama and chrysomelaena groups, as well as several species‐groups endemic to mainland New Guinea. Two species (D. harpalyce (Donovan), D. messalina Arora) of uncertain group status are currently misplaced based on strong evidence of paraphyly, and are accordingly transferred to the nigrina and kummeri groups, respectively. Based on this phylogeny, a revised systematic classification is presented at the species‐group level. An historical biogeographical analysis of the Delias group revealed that the most parsimonious reconstruction is an origin in the Australian Region, with at least seven dispersal events across Wallacea to the Oriental Region. The eight major clades of Delias appear to have diverged rapidly following complete separation of the Australian plate from Gondwana and its collision with the Asian plate in the late Oligocene. Further diversification and dispersal of Delias in the Miocene–Pliocene are associated with major geological and climatic changes that occurred in Australia–New Guinea during the late Tertiary. The ‘out‐of‐Australia’ hypothesis for the Delias group supports an origin of the Aporiina in southern Gondwana (southern vicariance hypothesis), which proposes that the ancestor of Delias + Leuciacria differentiated vicariantly on the Australian plate.  相似文献   

15.
Kuraishi, N., Matsui, M., Hamidy, A., Belabut, D. M., Ahmad, N., Panha, S., Sudin, A., Yong, H. S., Jiang, J.‐P., Ota, H., Thong, H. T. & Nishikawa, K. (2012). Phylogenetic and taxonomic relationships of the Polypedates leucomystax complex (Amphibia). —Zoologica Scripta, 42, 54–70. We investigated the phylogenetic and taxonomic relationships and estimated the history of species diversification and biogeography in the Asian rhacophorid genus Polypedates, focusing on the Polypedates leucomystax complex, whose members are notoriously difficult to classify. We first estimated phylogenetic relationships within the complex using 2005‐bp sequences of the mitochondrial 12S rRNA, tRNAval and 16S rRNA genes with maximum parsimony, maximum likelihood (ML) and Bayesian methods of inference. Polypedates exhibits well‐supported monophyly, with distinct clades for P. otilophus, P. colletti, P. maculatus and the P. leucomystax complex, consisting of P. macrotis, and the Malay (Polypedates sp. from Malay Peninsula), North China (P. braueri), South China (Polypedates cf. mutus 1), Indochina (P. megacephalus), Sunda (P. leucomystax) and Laos (Polypedates cf. mutus 2) clades. In a subsequent phylogenetic analysis of 4696‐bp sequences of the nuclear brain‐derived neurotrophic factor (BDNF), sodium/calcium exchanger 1 (NCX), POMC, Rag‐1, Rhod and Tyr genes using Bayesian methods of inference, all of these clades were recovered. Some clades of the P. leucomystax complex occur sympatrically and show high genetic diversity or morphological and acoustic differences. Similar tendencies were observed between some allopatric clades. Therefore, we consider each of these groups to be distinct specifically. We also estimated absolute divergence times within the genus using Bayesian methods. Divergence in Polypedates began with the divergence of a primarily South Asian Clade from the common ancestor of secondarily South‐East Asia P. maculatus and South‐East Asian members. The divergence between the latter occurred much later. The P. leucomystax complex diverged in the Pliocene, much later than other congeners, and seems to have been greatly affected by human‐related dispersal after the Pleistocene.  相似文献   

16.
Aim To examine the hypothesis raised by Graham S. Hardy that Pleistocene glacial cycles suffice to explain divergence among lineages within the endemic New Zealand speckled skink, Oligosoma infrapunctatum Boulenger. Location Populations were sampled from across the entire range of the species, on the North and South Islands of New Zealand. Methods We sequenced the mitochondrial genes ND2 (550 bp), ND4 + tRNAs (773 bp) and cytochrome b (610 bp) of 45 individuals from 21 locations. Maximum likelihood, maximum parsimony and Bayesian methods were used for phylogenetic reconstruction. The Shimodaira–Hasegawa test was used to examine hypotheses about the taxonomic status of morphologically distinctive populations. Results Our analysis revealed four strongly supported clades within O. infrapunctatum. Clades were largely allopatric, except on the west coast of the South Island, where representatives from all four clades were found. Divergences among lineages within the species were extremely deep, reaching over 5%. Two contrasting phylogeographical patterns are evident within O. infrapunctatum. Main conclusions The deep genetic divisions we found suggest that O. infrapunctatum is a complex of cryptic species which diverged in the Pliocene, contrary to the existing Pleistocene‐based hypothesis. Although Pleistocene glacial cycles do not underlie major divergences within this species, they may be responsible for the shallower phylogeographical patterns that are found within O. infrapunctatum, which include a radiation of haplotypes in the Nelson and Westland regions.  相似文献   

17.
Recent molecular studies have provided estimates of phylogeny for nearly all living and recently extinct species in the Order Dasyuromorphia, the dominant clade of insectivorous‐carnivorous marsupials in Australasia. We review these studies along with morphology‐based ones, and present an analysis of all cytochrome b, 12S rRNA, and protamine Pl gene sequences available. In light of these results, we provide a revised suprageneric classification and assess the implications of molecular and paleontological data for dasyurid cladogenesis. Molecular results divide extant dasyurids (Dasyuridae) into four major clades apart from the numbat (Myrmecobiidae) and thylacines (Thylacinidae). We recognize these clades as tribes Dasyurini (Dasyurus, Phascolosorex, and allied genera) and Phascogalini (Antechinus, Murexia, Phascogale) in the Subfamily Dasyurinae, and tribes Sminthopsini (Sminthopsis, Ningaui, Antechinomys) and Planigalini (Planigale) in the Subfamily Sminthopsinae. Each tribe shows a basal radiation of lineages corresponding to genera or species groups. Our results concur with the most recent previous synthesis of dasyurid phylogeny in many respects, but subsumption of New Guinean ‘phascolosoricines’ and ‘muricines’ within Dasyurini and Phascogalini, respectively, constitute significant differences. In particular, the sister‐pairing of ‘phascolosoricines’ with a Dasyurus‐Sarcophilus clade implied by molecular data is difficult to reconcile with anatomy. Divergence rates of mitochondrial sequences are calibrated approximately by comparing thylacine‐to‐dasyurid distances with the age of the oldest thylacinid (Badjcinus, latest Oligocene). Estimated cladogenic dates suggest that extant subfamilies shared a common ancestor around 24 Mya and that major radiations began late in the mid‐Miocene, consistent with the results of previous paleontological studies. The late‐middle and late Miocene corresponds to an episode of faunal turnover in Australian marsupials (including the decline of thylacinid and bandicoot genera, as well as the rise of dasyurids) and to a time when uplift of the New Guinean highlands accelerated the transition from rainforest to drier habitats. Our findings are consistent with the hypothesis that continent‐wide climate changes modulated macroevolution across these independent marsupial clades.  相似文献   

18.
A study was conducted on the habitat distribution of four sympatric species of Periophthalmus (the silver‐lined mudskipper Periophthalmus argentilineatus, the slender mudskipper Periophthalmus gracilis, the kalolo mudskipper Periophthalmus kalolo and the Malacca mudskipper Periophthalmus malaccensis) from northern Sulawesi. Molecular phylogenetic reconstructions based on one mtDNA marker (16S) were used to validate the morphological taxa, identifying five molecular clades. Periophthalmus argentilineatus includes two molecular species, which are named Periophthalmus argentilineatus clades F and K. Multivariate direct gradient analysis show that these species form three distinct ecological guilds, with the two molecular species occurring in different guilds. Periophthalmus clade F is ecologically eurytypic; Periophthalmus clade K and P. kalolo are prevalent in ecosystems isolated by strong oceanic currents and at shorter distances from the sea; P. gracilis plus P. malaccensis are prevalent in ecosystems connected by shallow coastal waters, in vegetated habitats at larger distances from the sea. This indicates for the first time that mudskipper species exhibit a range of adaptations to semiterrestrialism not only within genera, but even within morphospecies, delineating a much more complex adaptive scenario than previously assumed.  相似文献   

19.
The Stylonematales is the sole order of the Stylonematophyceae. The order consists of a mixture of filamentous or unicellular taxa that are small, grow on various surfaces, and are described from many floras, indicating that they may be cosmopolitan. Such ubiquity has been proposed to be due to properties of microorganisms, such as large population sizes, rather than human‐derived phenomena. While their small nature makes most records fortuitous, we targeted these red algae to get a better understanding of their global distribution, genetic variation, and phylogeographic relationships. Our results indicated that the genera are mostly well supported, except for the position of Stylonema cornu‐cervi with Goniotrichopsis reniformis, while intergeneric relationships are mostly unsupported. The most commonly isolated species was Stylonema alsidii. Within this species, several well‐supported clades were present. The phylogeographic relationships in S. alsidii showed no obvious biogeographic pattern, with supported clades containing samples from disparate locations, and multiple samples from the same area not grouping together. Some clades showed little genetic variation and wide distributions, possibly indicating human‐derived dispersal. Other clades, also with wide distribution, showed more genetic structure and could be candidates for groups formed by natural long‐distance dispersal. While all issues on ubiquity cannot be answered with this data set, it would appear that at least S. alsidii is a true ubiquitous taxon. The sister relationship of Rufusia pilicola to the remaining Stylonematophyceae, the presence of the carbohydrate floridoside, and this species’ unusual habitat indicate that it belongs to a new order, Rufusiales.  相似文献   

20.
We present a higher‐level phylogenetic hypothesis for the diverse neotropical butterfly subfamily Ithomiinae, inferred from one of the largest non‐molecular Lepidoptera data sets to date, including 106 species (105 ingroup) and 353 characters (306 informative) from adult and immature stage morphology and ecology. Initial analyses resulted in 1716 most parsimonious trees, which were reduced to a single tree after successive approximations character weighting. The inferred phylogeny was broadly consistent with other past and current work. Although some deeper relationships are uncertain, tribal‐level clades were generally strongly supported, with two changes required to existing classification. The tribe Melinaeini is polyphyletic and Athesis + Patricia require a new tribe. Methona should be removed from Mechanitini into the restored tribe Methonini. Dircennini was paraphyletic in analyses of all data but monophyletic based on adult morphology alone, and its status remains to be confirmed. Hypothyris, Episcada, Godyris, Hypoleria and Greta are paraphyletic. A simulation analysis showed that relatively basal branches tended to have higher partitioned Bremer support for immature stage characters. Larval hostplant records were optimized on to a reduced, generic‐level phylogeny and indicate that ithomiines moved from Apocynaceae to Solanaceae twice, or that Tithoreini re‐colonized Apocynaceae after a basal shift to Solanaceae. Ithomiine clades have specialized on particular plant clades suggesting repeated colonization of novel hostplant niches consistent with adaptive radiation. The shift to Solanum, comprising 70% of neotropical Solanaceae, occurs at the base of a clade containing 89% of all ithomiines, and is interpreted as the major event in the evolution of ithomiine larval hostplant relationships. © The Willi Hennig Society 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号