首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Outer rootcap cells of maize produce large numbers of secretory vesicles that ultimately fuse with the plasma membrane to discharge their product from the cell. As a result of the fusion, these vesicles contribute large quantities of membrane to the cell surface. In the present study, this phenomenon has been investigated using sections stained with phosphotungstic acid at low pH (PACP), a procedure in plant cells that specifically stains the plasma membrane. In the maize root tip, the PACP also stains the membranes of the secretory vesicles derived from Golgi apparatus to about the same density that it stains the plasma membrane. Additionally, the membranes of the secretory vesicles acquire the staining characteristic while still attached to the Golgi apparatus. The staining progresses across the dictyosome from the forming to the maturing pole, thus confirming the marked polarity of these dictyosomes. Interestingly, the PACP staining of Golgi apparatus is confined to the membranes of the secretory vesicles. It is largely absent from the central plates or peripheral tubules and provides an unambiguous example of lateral differentiation of membranes orthogonal to the major polarity axis. In the cytoplasm we could find no vesicles other than secretory vesicles bearing polysaccharide that were PACP positive. Even the occasional coated vesicle seen in the vicinity of the Golgi apparatus did not stain. Thus, if exocytotic vesicles are present in the maize root cap cell, they are formed in a manner where the PACP-staining constituent is not retained by the internalized membrane. The findings confirm dictyosome polarity in the maize root cap, provide evidence for membrane differentiation both across and at right angles to the major polarity axis, and suggest that endocytotic vesicles, if present, exclude the PACP-staining component.  相似文献   

2.
The Rho family GTPase Cdc42 is a key regulator of cell polarity and cytoskeletal organization in eukaryotic cells. In yeast, the role of Cdc42 in polarization of cell growth includes polarization of the actin cytoskeleton, which delivers secretory vesicles to growth sites at the plasma membrane. We now describe a novel temperature-sensitive mutant, cdc42-6, that reveals a role for Cdc42 in docking and fusion of secretory vesicles that is independent of its role in actin polarization. cdc42-6 mutants can polarize actin and deliver secretory vesicles to the bud, but fail to fuse those vesicles with the plasma membrane. This defect is manifested only during the early stages of bud formation when growth is most highly polarized, and appears to reflect a requirement for Cdc42 to maintain maximally active exocytic machinery at sites of high vesicle throughput. Extensive genetic interactions between cdc42-6 and mutations in exocytic components support this hypothesis, and indicate a functional overlap with Rho3, which also regulates both actin organization and exocytosis. Localization data suggest that the defect in cdc42-6 cells is not at the level of the localization of the exocytic apparatus. Rather, we suggest that Cdc42 acts as an allosteric regulator of the vesicle docking and fusion apparatus to provide maximal function at sites of polarized growth.  相似文献   

3.
The establishment of cell polarity involves positive-feedback mechanisms that concentrate polarity regulators, including the conserved GTPase Cdc42p, at the "front" of the polarized cell. Previous studies in yeast suggested the presence of two parallel positive-feedback loops, one operating as a diffusion-based system, and the other involving actin-directed trafficking of Cdc42p on vesicles. F-actin (and hence directed vesicle traffic) speeds fluorescence recovery of Cdc42p after photobleaching, suggesting that vesicle traffic of Cdc42p contributes to polarization. We present a mathematical modeling framework that combines previously developed mechanistic reaction-diffusion and vesicle-trafficking models. Surprisingly, the combined model recapitulated the observed effect of vesicle traffic on Cdc42p dynamics even when the vesicles did not carry significant amounts of Cdc42p. Vesicle traffic reduced the concentration of Cdc42p at the front, so that fluorescence recovery mediated by Cdc42p flux from the cytoplasm took less time to replenish the bleached pool. Simulations in which Cdc42p was concentrated into vesicles or depleted from vesicles yielded almost identical predictions, because Cdc42p flux from the cytoplasm was dominant. These findings indicate that vesicle-mediated delivery of Cdc42p is not required to explain the observed Cdc42p dynamics, and raise the question of whether such Cdc42p traffic actually contributes to polarity establishment.  相似文献   

4.
B Goud  A Salminen  N C Walworth  P J Novick 《Cell》1988,53(5):753-768
SEC4, one of the 10 genes involved in the final stage of the yeast secretory pathway, encodes a ras-like, GTP-binding protein. In wild-type cells, Sec4 protein is located on the cytoplasmic face of both the plasma membrane and the secretory vesicles in transit to the cell surface. In all post-Golgi blocked sec mutants, Sec4p is predominantly associated with the secretory vesicles that accumulate as a result of the secretory block. Sec4p is synthesized as a soluble protein that rapidly (t1/2 less than or equal to 1 min) and tightly associates with secretory vesicles and the plasma membrane by virtue of a conformational change of a covalent modification. These data suggest that Sec4p may function as a "G" protein on the vesicle surface to transduce an intracellular signal needed to regulate transport between the Golgi apparatus and the plasma membrane.  相似文献   

5.
Coat protein complex II (COPII) vesicle formation at the endoplasmic reticulum (ER) transports nascent secretory proteins forward to the Golgi complex. To further define the machinery that packages secretory cargo and targets vesicles to Golgi membranes, we performed a comprehensive proteomic analysis of purified COPII vesicles. In addition to previously known proteins, we identified new vesicle proteins including Coy1, Sly41 and Ssp120, which were efficiently packaged into COPII vesicles for trafficking between the ER and Golgi compartments. Further characterization of the putative calcium‐binding Ssp120 protein revealed a tight association with Emp47 and in emp47Δ cells Ssp120 was mislocalized and secreted. Genetic analyses demonstrated that EMP47 and SSP120 display identical synthetic positive interactions with IRE1 and synthetic negative interactions with genes involved in cell wall assembly. Our findings support a model in which the Emp47–Ssp120 complex functions in transport of plasma membrane glycoproteins through the early secretory pathway.   相似文献   

6.
Summary Two different types of Golgi vesicles involved in wall formation can be visualized during lobe growth inMicrasterias when using high-pressure freeze fixation followed by freeze substitution. One type that corresponds to the dark vesicles (DV) described in literature seems to arise by a developmental process occurring at the Golgi bodies with the single vesicles being forwarded from one cisterna to the next. The other vesicle type appears to be produced at thetrans Golgi network without any visible precursors at the Golgi cisternae. A third type of vesicle, produced by median andtrans cisternae, contains slime; these are considerably larger than those previously mentioned and they do not participate in wall formation. The distribution of the two types of cell wall vesicles at the cell periphery and their fusion with the plasma membrane are shown for the first time, since chemical fixation is too slow to preserve a sufficient number of vesicles in the cortical cytoplasm. The results indicate that fusions of both types of vesicles with the plasma membrane are possible all over the entire surface of the growing half cell. However, the DVs are much more concentrated at the growing lobes, where they form queues several vesicles deep behind zones on the plasma membrane thought to be specific fusion sites. The structural observations reveal that the regions of enhanced vesicle fusion correspond in general to the sites of calcium accumulation determined in earlier studies. By virtue of the absence of the DVs in the region of cell wall indentations the second type of wall forming vesicle appears prominent; they too fuse with the plasma membrane and discharge their contents to the wall.  相似文献   

7.
Lipoprotein particles of the size range of very low density lipoproteins in smooth endoplasmic reticulum, peripheral elements of the Golgi apparatus, and secretory vesicles of the immature Golgi apparatus face are 55 to 80 nm in diameter. Particles in mature secretory vesicles are smaller (45 nm). Concomitant with the change in particle size, the lumina of mature vesicles increase in electron density. A technique to fractionate immature and mature secretory vesicles was based on precipitation of a cupric-ferrocyanide complex (Hatchett's brown) through the action of a NADH-ferricyanide oxido-reductase resistant to glutaraldehyde which is characteristic of the membranes of mature secretory vesicles and of the plasma membrane of liver. Mature secretory vesicle fractions so isolated were enriched in cholesterol and depleted in triglycerides relative to immature vesicles on a phospholipid basis. Lipase activity was present in secretory vesicle fractions of the Golgi apparatus as shown by biochemical analysis and by cytochemistry. Cytochemical studies showed lipase to be present in both mature and immature vesicles but most evident in immature vesicles. The findings suggest that some very low density lipoprotein particles are converted to particles of smaller diameter during transit through Golgi apparatus. A lipase-mediated hydrolysis of triglycerides may relate to the transformation.  相似文献   

8.
9.
Polarity is key to the function of eukaryotic cells. On the establishment of a polarity axis, cells can vectorially target secretion, generating an asymmetric distribution of plasma membrane proteins. From Saccharomyces cerevisiae to mammals, the small GTPase Cdc42 is a pivotal regulator of polarity. We used a fluorescent probe to visualize the distribution of phosphatidylserine in live S. cerevisiae. Remarkably, phosphatidylserine was polarized in the plasma membrane, accumulating in bud necks, the bud cortex and the tips of mating projections. Polarization required vectorial delivery of phosphatidylserine-containing secretory vesicles, and phosphatidylserine was largely excluded from endocytic vesicles, contributing to its polarized retention. Mutants lacking phosphatidylserine synthase had impaired polarization of the Cdc42 complex, leading to a delay in bud emergence, and defective mating. The addition of lysophosphatidylserine resulted in resynthesis and polarization of phosphatidylserine, as well as repolarization of Cdc42. The results indicate that phosphatidylserine--and presumably its polarization--are required for optimal Cdc42 targeting and activation during cell division and mating.  相似文献   

10.
Summary In nongrowing secretory cells of plants, large quantities of membrane are transferred from the Golgi apparatus to the plasma membrane without a corresponding increase in cell surface area or accumulation of internal membranes. Movement and/or redistribution of membrane occurs also in trans Golgi apparatus cisternae which disappear after being sloughed from the dictyosome, and in secretory vesicles which lose much of their membrane in transit to the cell surface. These processes have been visualized in freeze-substituted corn rootcap cells and a structural basis for membrane loss during trafficking is seen. It involves three forms of coated membranes associated with the trans parts of the Golgi apparatus, with cisternae and secretory vesicles, and with plasma membranes. The coated regions of the plasma membrane were predominantly located at sites of recent fusion of secretory vesicles suggesting a vesicular mechanism of membrane removal. The two other forms of coated vesicles were associated with the trans cisternae, with secretory vesicles, and with a post Golgi apparatus tubular/vesicular network not unlike the TGN of animal cells. However, the trans Golgi network in plants, unlike that in animals, appears to derive directly from the trans cisternae and then vesiculate. The magnitude of the coated membrane-mediated contribution of the endocytic pathway to the formation of the TGN in rootcap cells is unknown. Continued formation of new Golgi apparatus cisternae would be required to maintain the relatively constant form of the Golgi apparatus and TGN, as is observed during periods of active secretion.  相似文献   

11.
Transforming growth factor β receptor II (Tβ RII) is synthesized in the cytoplasm and then transported to the plasma membrane of cells to fulfil its signalling duty. Here, we applied live‐cell fluorescence imaging techniques, in particular quasi‐total internal reflection fluorescence microscopy, to imaging fluorescent protein‐tagged Tβ RII and monitoring its secretion process. We observed punctuate‐like Tβ RII‐containing post‐Golgi vesicles formed in MCF7 cells. Single‐particle tracking showed that these vesicles travelled along the microtubules at an average speed of 0.51 μm/s. When stimulated by TGF‐β ligand, these receptor‐containing vesicles intended to move towards the plasma membrane. We also identified several factors that could inhibit the formation of such post‐Golgi vesicles. Although the inhibitory mechanisms still remain unknown, the observed characteristics of Tβ RII‐containing vesicles provide new information on intracellular Tβ RII transportation. It also renders Tβ RII a good model system for studying post‐Golgi vesicle‐trafficking and protein transportation. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Root border cells lie on the surface of the root cap and secrete massive amounts of mucilage that contains polysaccharides and proteoglycans. Golgi stacks in the border cells have hypertrophied margins, reflecting elevated biosynthetic activity to produce the polysaccharide components of the mucilage. To investigate the three‐dimensional structures and macromolecular compositions of these Golgi stacks, we examined high‐pressure frozen/freeze‐substituted alfalfa root cap cells with electron microscopy/tomography. Golgi stacks in border cells and peripheral cells, precursor cells of border cells, displayed similar morphological features, such as proliferation of trans cisternae and swelling of the trans cisternae and trans‐Golgi network (TGN) compartments. These swollen margins give rise to two types of vesicles larger than other Golgi‐associated vesicles. Margins of trans‐Golgi cisternae accumulate the LM8 xylogalacturonan (XGA) epitope, and they become darkly stained large vesicles (LVs) after release from the Golgi. Epitopes for xyloglucan (XG), polygalacturonic acid/rhamnogalacturonan‐I (PGA/RG‐I) are detected in the trans‐most cisternae and TGN compartments. LVs produced from TGN compartments (TGN‐LVs) stained lighter than LVs and contained the cell wall polysaccharide epitopes seen in the TGN. LVs carrying the XGA epitope fuse with the plasma membrane only in border cells, whereas TGN‐LVs containing the XG and PGA/RG‐I epitopes fuse with the plasma membrane of both peripheral cells and border cells. Taken together, these results indicate that XGA is secreted by a novel type of secretory vesicles derived from trans‐Golgi cisternae. Furthermore, we simulated the collapse in the central domain of the trans‐cisternae accompanying polysaccharide synthesis with a mathematical model.  相似文献   

13.
Cdc42 is a Rho-family GTPase that in yeast is important in establishing polarized bud growth. Here we show that Cdc42 is also essential in establishing and maintaining polarity in epithelial cells. Functional deletion of Cdc42 in Madin-Darby canine kidney (MDCK) cells results in the selective depolarization of basolateral membrane proteins; the polarity of apical proteins remains unaffected. This phenotype does not reflect major alterations in the actin cytoskeleton, but rather results from the selective inhibition of membrane traffic to the basolateral plasma membrane in both the endocytic and the secretory pathways. Thus, Cdc42 plays a critical part in epithelial-cell polarity, by, unexpectedly, regulating the fidelity of membrane transport.  相似文献   

14.
The distribution of the glycoprotein, mucin 1 (MUC1), was determined in lactating guinea-pig mammary tissue at the resolution of the electron microscope. MUC1 was detected on the apical plasma membrane of secretory epithelial cells, the surface of secreted milk-fat globules, the limiting membranes of secretory vesicles containing casein micelles and in small vesicles and tubules in the apical cytoplasm. Some of the small MUC1-containing vesicles were associated with the surfaces of secretory vesicles and fat droplets in the cytoplasm. MUC1 was detected in much lower amounts on basal and lateral plasma membranes. By quantitative immunocytochemistry, the ratio of MUC1 on apical membranes and milk-fat globules to that on secretory vesicle membranes was estimated to be 9.2:1 (density of colloidal gold particles/microm membrane length). The ratio of MUC1 on apical membranes compared with basal/lateral membranes was approximately 99:1. The data are consistent with a mechanism for milk-fat secretion in which lipid globules acquire an envelope of membrane from the apical surface and possibly from small vesicles containing MUC1 in the cytoplasm. During established lactation, secretory vesicle membrane does not appear to contribute substantially to the milk-fat globule membrane, or to give rise in toto to the apical plasma membrane.  相似文献   

15.
Rho proteins: linking signaling with membrane trafficking   总被引:9,自引:1,他引:8  
Rho proteins are well known for their effects on the actin cytoskeleton, and are activated in response to a variety of extracellular stimuli. Several Rho family members are localized to vesicular compartments, and increasing evidence suggests that they play important roles in the trafficking of vesicles on both endocytic and exocytic pathways. In particular, RhoA, RhoB, RhoD, Rac and Cdc42 have been shown to affect various steps of membrane trafficking. The underlying molecular basis for these effects of Rho proteins are incompletely understood, but in the case of Cdc42 it appears that it can drive vesicle movement through Arp2/3 complex-mediated actin polymerization at the surface of the vesicle. This is similar to what is believed to happen when Rac and Cdc42 stimulate actin polymerization at the plasma membrane. Rho proteins may also affect membrane trafficking by altering phosphatidylinositide composition of membrane compartments, or through interactions with microtubules.  相似文献   

16.
The molecular mechanisms underlying cytoskeleton‐dependent Golgi positioning are poorly understood. In mammalian cells, the Golgi apparatus is localized near the juxtanuclear centrosome via dynein‐mediated motility along microtubules. Previous studies implicate Cdc42 in regulating dynein‐dependent motility. Here we show that reduced expression of the Cdc42‐specific GTPase‐activating protein, ARHGAP21, inhibits the ability of dispersed Golgi membranes to reposition at the centrosome following nocodazole treatment and washout. Cdc42 regulation of Golgi positioning appears to involve ARF1 and a binding interaction with the vesicle‐coat protein coatomer. We tested whether Cdc42 directly affects motility, as opposed to the formation of a trafficking intermediate, using a Golgi capture and motility assay in permeabilized cells. Disrupting Cdc42 activation or the coatomer/Cdc42 binding interaction stimulated Golgi motility. The coatomer/Cdc42‐sensitive motility was blocked by the addition of an inhibitory dynein antibody. Together, our results reveal that dynein and microtubule‐dependent Golgi positioning is regulated by ARF1‐, coatomer‐, and ARHGAP21‐dependent Cdc42 signaling.  相似文献   

17.
The ultrastructural organization of actively secreting barley (Hordeum vulgare L. cv. Himalaya) aleurone cells was examined using ultrarapid-freezing (<-10 000°C s-1) followed by freeze-fracture and freeze-substitution. Our analysis indicates that much of the evidence supporting a direct pathway from the endoplasmic reticulum (ER) to the plasma membrane (i.e. bypassing the Golgi apparatus) for the secretion of -amylase (EC 3.2.1.1) may not be valid. Cryofixed ER cisternae show no sign of vesiculation during active -amylase secretion in gibberellic acid (GA3)-treated cells. At the same time, Golgi complexes are abundant and numerous small vesicles are associated with the edges of the cisternae. Vesicles appear to be involved in the delivery of secretory products to the plasma membrane since depressions containing excess membrane material appear there. Treatment with GA3 also induces changes in the composition of Golgi membranes; most notably, the density of intramembrane particles increases from 2700 m-2 to 3800 m-2 because of an increase of particles in the 3–8.5-nm size range. A slight decrease in 9–11-nm particles also occurs. These changes in membrane structure appear to occur as the Golgi complex becomes committed to the processing and packaging of secretory proteins. We suggest that secretory proteins in this tissue are synthesized in the abundant rough ER, packaged in the Golgi apparatus, and transported to the plasma membrane via Golgi-derived secretory vesicles. Mobilization of reserves is also accompanied by dynamic membrane events. Our micrographs show that the surface monolayer of the lipid bodies fuses with the outer leaflet of the bilayer of protein-body membranes during the mobilization of lipid reserves. Following the breakdown of the protein reserves, the protein bodies assume a variety of configurations.Abbreviations ER endoplasmic reticulum - GA3 gibberellic acid - P protoplasmic - E exoplasmic  相似文献   

18.
Most eukaryotic cells are polarized. Common toolbox regulating cell polarization includes Rho guanosine triphosphatases (GTPases), in which spatiotemporal activation is regulated by a plethora of regulators. Rho of plants (ROPs) are the only Rho GTPases in plants. Although vesicular trafficking was hinted in the regulation of ROPs, it was unclear where vesicle‐carried ROP starts, whether it is dynamically regulated, and which components participate in vesicle‐mediated ROP targeting. In addition, although vesicle trafficking and guanine nucleotide inhibitor (GDI) pathways in Rho signaling have been extensively studied in yeast, it is unknown whether the two pathways interplay. Unclear are also cellular and developmental consequences of their interaction in multicellular organisms. Here, we show that the dynamic targeting of ROP through vesicles requires coat protein complex II and ADP‐ribosylation factor 1‐mediated post‐Golgi trafficking. Trafficking of vesicle‐carried ROPs between the plasma membrane and the trans‐Golgi network is mediated through adaptor protein 1 and sterol‐mediated endocytosis. Finally, we show that GDI and vesicle trafficking synergistically regulate cell polarization and ROP targeting, suggesting that the establishment and maintenance of cell polarity is regulated by an evolutionarily conserved mechanism.  相似文献   

19.
Budding yeast grow asymmetrically by the polarized delivery of proteins and lipids to specific sites on the plasma membrane. This requires the coordinated polarization of the actin cytoskeleton and the secretory apparatus. We identified Rho3 on the basis of its genetic interactions with several late-acting secretory genes. Mutational analysis of the Rho3 effector domain reveals three distinct functions in cell polarity: regulation of actin polarity, transport of exocytic vesicles from the mother cell to the bud, and docking and fusion of vesicles with the plasma membrane. We provide evidence that the vesicle delivery function of Rho3 is mediated by the unconventional myosin Myo2 and that the docking and fusion function is mediated by the exocyst component Exo70. These data suggest that Rho3 acts as a key regulator of cell polarity and exocytosis, coordinating several distinct events for delivery of proteins to specific sites on the cell surface.  相似文献   

20.
Summary An electron microscopic study of cress (Lepidium sativum L.) roots treated with cyclopiazonic acid (CPA), an inhibitor of the Ca2+-ATPase in the endoplasmic reticulum (ER) has been carried out. Drastic changes in the endomembrane system of the secretory root cap cells were observed. After treatment with CPA dense spherical or elliptoidal aggregates of ER (diameter 2–4 m) were formed in addition to the randomly distributed ER cisternae characteristic for control cells. The formation of ER aggregates indicates that in spite of an inhibition of the Ca2+ -ATPase in the ER by CPA, membrane synthesis in the ER continued. The ER aggregates are interpreted as a reservoir of ER membrane material newly synthesized during the 2 h CPA-treatment. Hypertrophied Golgi cisternae and secretory vesicles, which are characteristic for secretory cells under control conditions, were completely absent. Additionally the shape of the Golgi stacks was flat and the diameter of the cisternae was shortened by about one third. These phenomena are indicative of an inactive state of the Golgi apparatus. The cellular organization of both other cell types of the root cap, meristematic cells and statocytes, was not visibly affected by CPA, both having a relatively low secretory activity. The formation of ER aggregates as well as the reduction of Golgi compartments are indications for the existence of a unidirectional transport of membrane material from the ER to the Golgi. It is suggested that the membrane traffic from the ER to the Golgi apparatus is regulated by the cytosolic and/or luminal calcium concentration in secretory cells of the root cap.Abbreviations CPA cyclopiazonic acid - ER endoplasmic reticulum  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号