首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In addition to the already known cagA gene, novel genetic markers have been associated with Helicobacter pylori (H. pylori) virulence: the dupA and vacAi genes. These genes might play an important role as specific markers to determine the clinical outcome of the disease, especially the vacAi gene, which has been expected to be a good marker of severe pathologies like gastric adenocarcinoma. In the present study, the association of cagA, dupA, and vacAi genes with gastroduodenal pathologies in Chilean patients was studied. One hundred and thirty-two patients positive for H. pylori were divided into two groups—non-severe and severe gastric pathologies—and investigated for the presence of cagA, dupA, and vacAi H. pylori virulence genes by PCR. The cagA gene was detected in 20/132 patients (15.2%), the vacAi1 gene was detected in 54/132 patients (40.9%), the vacAi2 gene was detected in 26/132 patients (19.7%), and the dupA gene was detected in 50/132 (37.9%) patients. Logistic regression model analysis showed that the vacAi1 isoform gene in the infected strains and the severity of the diseases outcome were highly associated, causing severe gastric damage that may lead to gastric cancer (p < 0.0001; OR = 8.75; 95% CI 3.54–21.64). Conversely, cagA (p = 0.3507; OR = 1.62; 95% CI 0.59–4.45) and vacAi2 (p = 0.0114; OR = 3.09; 95% CI 1.26–7.60) genes were not associated with damage, while the dupA gene was associated significantly with non-severe clinical outcome (p = 0.0032; OR = 0.25; 95% CI 0.09–0.65). In addition, dupA gene exerts protection against severe gastric pathologies induced by vacAi1 by delaying the outcome of the disease by approximately 20 years.  相似文献   

4.

Key message

Novel barley (1 → 3, 1 → 4)-β-glucan endohydrolases with increased thermostability.

Abstract

Rapid and reliable degradation of (1 → 3, 1 → 4)-β-glucan to produce low viscosity wort is an essential requirement for malting barley. The (1 → 3, 1 → 4)-β-glucan endohyrolases are responsible for the primary hydrolysis of cell wall β-glucan. The variation in β-glucanase genes HvGlb1 and HvGlb2 that encode EI and EII, respectively, were examined in elite and exotic germplasm. Six EI and 14 EII allozymes were identified, and significant variation was found in β-glucanase from Hordeum vulgare ssp. spontaneum (wild barley), the progenitor of modern cultivated barley. Allozymes were examined using prediction methods; the change in Gibbs free energy of the identified amino acid substitutions to predict changes in enzyme stability and homology modelling to examine the structure of the novel allozymes using the existing solved EII structure. Two EI and four EII allozymes in wild barley accessions were predicted to have improved barley β-glucanase thermostability. One novel EII candidate was identified in existing backcross lines with contrasting HvGlb2 alleles from wild barley and cv Flagship. The contrasting alleles in selected near isogenic lines were examined in β-glucanase thermostability analyses. The EII from wild barley exhibited a significant increase in β-glucanase thermostability conferred by the novel HvGlb2 allele. Increased β-glucanase thermostability is heritable and candidates identified in wild barley could improve malting and brewing quality in new varieties.
  相似文献   

5.

Key message

A CIho 5791 × Tifang recombinant inbred mapping population was developed and used to identify major dominant resistance genes on barley chromosomes 6H and 3H in CI5791 and on 3H in Tifang.

Abstract

The barley line CIho 5791 confers high levels of resistance to Pyrenophora teres f. teres, causal agent of net form net blotch (NFNB), with few documented isolates overcoming this resistance. Tifang barley also harbors resistance to P. teres f. teres which was previously shown to localize to barley chromosome 3H. A CIho 5791 × Tifang F6 recombinant inbred line (RIL) population was developed using single seed descent. The Illumina iSelect SNP platform was used to identify 2562 single nucleotide polymorphism (SNP) markers across the barley genome, resulting in seven linkage maps, one for each barley chromosome. The CIho 5791 × Tifang RIL population was evaluated for NFNB resistance using nine P. teres f. teres isolates collected globally. Tifang was resistant to four of the isolates tested whereas CIho 5791 was highly resistant to all nine isolates. QTL analysis indicated that the CIho 5791 resistance mapped to chromosome 6H whereas the Tifang resistance mapped to chromosome 3H. Additionally, CIho 5791 also harbored resistance to two Japanese isolates that mapped to a 3H region similar to that of Tifang. SNP markers and RILs harboring both 3H and 6H resistance will be useful in resistance breeding against NFNB.
  相似文献   

6.
Requirement of vernalization is an important factor which plays a crucial role in cereals to transit from vegetative to reproductive phase. There are three types of growth habit in barley: winter, spring and facultative types; in which spring type does not require vernalization but winter and facultative genotypes require full and partial vernalization, respectively. Combination of two loci, Vrn-h1 and Vrn-h2, regulates vernalization in barley genotypes. Specific DNA markers have been identified for growth habit regulator genes in barley. In this study, we examined 24 barley genotypes using specific primers for detecting Vrn-h1 and Vrn-h2 loci. Results showed that among all differently suggested primer combinations, a few markers were precisely correlated with seasonal growth habit in barley. The specific markers of 600, 600 and 200 bps were verified for ZCCT-Ha, ZCCT-Hb and ZCCT-Hc loci, respectively. Our field growth habit test showed that cultivar Bahman as a winter growth habit, where all the others genotypes exhibited spring growth habit. By using specific primers for Vrn-h1, only Bahman cultivar produced 616 bp and 830 bp fragments and spring genotypes showed 574 bp or 616 bp alleles without any amplification for 830 bp fragments. Therefore, presence of 616 bp and 830 bp alleles together in each genotype can be considered as an informative marker for winter growth habit in barley. These informative markers can be used easily in barley breeding programmes for detection of growth habit types in the seedling stage.  相似文献   

7.
Helicobacter pylori is an infectious agent commonly associated with gastrointestinal diseases. The use of probiotics to treat this infection has been documented, however, their potential antimicrobial metabolites have not yet been investigated. In the present study, the effect of reuterin produced by Lactobacillus reuteri on H. pylori growth and virulence gene expression was evaluated. It was observed that reuterin caused significant (P < 0.05) H. pylori growth inhibition at concentrations from 0.08 to 20.48 mM, with minimal inhibitory concentrations (MICs) of 20.48 mM for H. pylori ATCC700824 and 10.24 mM for H. pylori ATCC43504. In a reuterin bacterial killing assay, it was observed that half of the MIC value for H. pylori (ATCC700824) significantly (P < 0.01) reduced colony numbers from 5.65 ± 0.35 to 3.78 ± 0.35 Log10 CFU/mL after 12 h of treatment and then increased them to 5.25 ± 0.23 Log10 CFU/mL at 24 h; at its MIC value (20.48 mM), reuterin abrogated (P < 0.01) H. pylori (ATCC700824) growth after 20 h of culture. In addition, reuterin significantly (P < 0.01) reduced H. pylori (ATCC 43504) colony numbers from 5.65 ± 0.35 to 4.1 ± 0.12 Log10 CFU/mL from 12 to 24 h of treatment and abrogated its growth at its MIC value (10.24 mM), after 20 h of treatment. Reuterin did not alter normal human gastric Hs738.St/Int cell viability at the concentrations tested for H. pylori strains. Furthermore, 10 μM reuterin was shown to significantly (P < 0.01) reduce mRNA relative expression levels of H. pylori virulence genes vacA and flaA at 3 h post-treatment, whose effect was higher at 6 h post-treatment, as measured by RT-qPCR. The observed direct antimicrobial effect and the downregulation of expression of virulence genes on H. pylori by reuterin may contribute to the understanding of the mechanisms of action of probiotics against H. pylori.  相似文献   

8.
The study focused on the incidence of enterotoxigenic Escherichia coli (ETEC) and verotoxigenic E. coli (VTEC) in raw milk and traditional dairy cheeses marketed in Romania, characterizing the virulence and antibiotic resistance genes of these isolates. One hundred and twenty samples of raw milk and 80 samples of unpasteurized telemy cheese were collected and cultured according to the international standard protocol. All the characteristic E. coli cultures were analyzed for the presence of STa, STb, LT, stx1, and stx2 toxicity genes. The ETEC/VTEC strains were tested for the presence of antibiotic resistance genes, such as aadA1, tetA, tetB, tetC, tetG, dfrA1, qnrA, aaC, sul1, bla SHV , bla CMY , bla TEM , and ere(A), using PCR. The results showed that 27 samples (18.62%) were positive for one of the virulence genes investigated. 48.1% (n = 13) tested positive at the genes encoding for tetracycline resistance, tetA being the most prevalent one (61.5%; n = 8). A high percent (33.3%; n = 9) revealed the beta-lactamase (bla TEM ) resistance gene, and none of the samples tested positive for bla CMY and bla SHV genes. The genes responsible for resistance to sulfonamides (sul1) and trimethoprim (dfrA1) were detected in rates of 14.8% (n = 4) and 7.4% (n = 2), respectively. E. coli is highly prevalent in raw milk and unpasteurized cheeses marketed in Romania. These strains might represent an important reservoir of resistance genes which can easily spread into other European countries, given the unique market.  相似文献   

9.

Key message

Evaluation and selection of reference genes in Pinus massoniana L. (PM) for gene expression studies of various tissues, floral organ development, and abiotic stress.

Abstract

An important prerequisite for obtaining accurate gene expression results using quantitative real-time PCR is the selection of a reference gene or a group of genes having a highly stable level of expression. Pinus massoniana L. (PM) is the predominant fast-growing timber forest tree species in southern China. In this study of PM, we evaluated various tissues, flowers in different developmental phases, leaves from a cultivar with insect resistance, and leaves from plants under several types of abiotic stresses. Comprehensive Analysis was performed using BestKeeper, Normfinder, geNorm, and RefFinder software to select the most stable reference gene or gene group from among 25 candidate genes in these samples. The results showed that different experimental conditions require the use of different reference genes: ACT1 could be used as a reference gene for all samples in this study; UBI4 was the best gene for various tissues and zinc stress; CYP was the most stable gene for leaves from insect-resistant materials and Pb stress; Fbox and UBI11 were the best reference genes for salt stress; Fbox + RRP8, ARF + TUBA, and EF1B + IDH were the best reference groups for drought stress, low temperature stress, and flowers in different developmental phases, respectively. This study presents a reliable selection of reference genes for Masson pine, and the conclusions are meaningful for improving the accuracy of expression analyses in future molecular biology studies.
  相似文献   

10.
The present study aimed at evaluating the role of captive scarlet ibises (Eudocimus ruber) and their environment as reservoirs of Aeromonas spp. and Plesiomonas spp., and analyzing the in vitro antimicrobial susceptibility and virulence of the recovered bacterial isolates. Thus, non-lactose and weak-lactose fermenting, oxidase positive Gram-negative bacilli were recovered from cloacal samples (n = 30) of scarlet ibises kept in a conservational facility and from water samples (n = 30) from their environment. Then, the antimicrobial susceptibility, hemolytic activity and biofilm production of the recovered Aeromonas spp. and Plesiomonas shigelloides strains were assessed. In addition, the virulence-associated genes of Aeromonas spp. were detected. Ten Aeromonas veronii bv. sobria, 2 Aeromonas hydrophila complex and 10 P. shigelloides were recovered. Intermediate susceptibility to piperacillin-tazobactam and cefepime was observed in 2 Aeromonas spp. and 1 P. shigelloides, respectively, and resistance to gentamicin was observed in 4 P. shigelloides. The automated susceptibility analysis revealed resistance to piperacillin-tazobactam and meropenem among Aeromonas spp. and intermediate susceptibility to gentamicin among P. shigelloides. All Aeromonas isolates presented hemolytic activity, while 3 P. shigelloides were non-hemolytic. All Aeromonas spp. and 3/10 P. shigelloides were biofilm-producers, at 28 °C, while 10 Aeromonas spp. and 6/10 P. shigelloides produced biofilms, at 37 °C. The most prevalent virulence genes of Aeromonas spp. were asa1 and ascV. Scarlet ibises and their environment harbour potentially pathogenic bacteria, thus requiring monitoring and measures to prevent contamination of humans and other animals.  相似文献   

11.
12.
13.
Bacillus thuringiensis (Berliner) bears essential characteristics in the control of insect pests, such as its unique mode of action, which confers specificity and selectivity. This study assessed cry gene contents from Bt strains and their entomotoxicity against Diatraea saccharalis (F.) and Diatraea flavipennella (Box) (Lepidoptera: Crambidae). Bioassays with Bt strains were performed against neonates to evaluate their lethal and sublethal activities and were further analyzed by PCR, using primers to identify toxin genes. For D. saccharalis and D. flavipennella, 16 and 18 strains showed over 30% larval mortality in the 7th day, respectively. The LC50 values of strains for D. saccharalis varied from 0.08 × 105 (LIIT-0105) to 4104 × 105 (LIIT-2707) spores + crystals mL?1. For D. flavipennella, the LC50 values of strains varied from 0.40 × 105 (LIIT-2707) to 542 × 105 (LIIT-2109) spores + crystals mL?1. For the LIIT-0105 strain, which was the most toxic to D. saccharalis, the genes cry1Aa, cry1Ab, cry1Ac, cry1B, cry1C, cry1D, cry1F, cry1I, cry2Aa, cry2Ab, cry8, and cry9C were detected, whereas for the strain LIIT-2707, which was the most toxic to D. flavipennella, detected genes were cry1Aa, cry1Ab, cry1Ac, cry1B, cry1D, cry1F, cry1I, cry2Aa, cry2Ab, and cry9. The toxicity data and toxin gene content in these strains of Bt suggest a great variability of activity with potential to be used in the development of novel biopesticides or as source of resistance genes that can be expressed in plants to control pests.  相似文献   

14.

Background

Alike to Reduced height-1 (Rht-1) genes in wheat and the semi dwarfing (sd-1) gene in rice, the sdw1/denso locus involved in the metabolism of the GA, was designated as the ‘Green Revolution’ gene in barley. The recent molecular characterization of the candidate gene HvGA20ox2 for sdw1/denso locus allows to estimate the impact of the functional polymorphism of this gene on the variation of agronomically important traits in barley.

Results

We investigated the effect of the 7-bp deletion in exon 1 of HvGA20ox2 gene (sdw1.d mutation) on the variation of yield-related and malting quality traits in the population of DHLs derived from cross of medium tall barley Morex and semi-dwarf barley Barke. Segregation of plant height, flowering time, thousand grain weight, grain protein content and grain starch was evaluated in two diverse environments separated from one another by 15° of latitude. The 7-bp deletion in HvGA20ox2 gene reduced plant height by approximately 13 cm and delayed flowering time by 3–5 days in the barley segregating DHLs population independently on environmental cue. On other hand, the sdw1.d mutation did not affect significantly either grain quality traits (protein and starch content) or thousand grain weight.

Conclusions

The beneficial effect of the sdw1.d allele could be associated in barley with lodging resistance and extended period of vegetative growth allowing to accumulate additional biomass that supports higher yield in certain environments. However, no direct effect of the sdw1.d mutation on thousand grain weight or grain quality traits in barley was detected.
  相似文献   

15.
The present study aimed to characterize Enterococcus faecalis (n = ?6) and Enterococcus faecium (n = 1) isolated from healthy chickens to find a novel perspective probiotic candidate that antagonize Clostridium botulinum types A, B, D, and E. The isolated enterococci were characterized based on phenotypic properties, PCR, and matrix-assisted laser desorption/ionization time of flight (MALDI-TOF). The virulence determinants including hemolytic activity on blood agar, gelatinase activity, sensitivity to vancomycin, and presence of gelatinase (gelE) and enterococcal surface protein (esp) virulence genes were investigated. Also, the presence of enterocin structural genes enterocin A, enterocin B, enterocin P, enterocin L50A/B, bacteriocin 31, enterocin AS48, enterocin 1071A/1071B, and enterocin 96 were assessed using PCR. Lastly, the antagonistic effect of the selected Enterococcus spp. on the growth of C. botulinum types A, B, D, and E was studied. The obtained results showed that four out of six E. faecalis and one E. faecium proved to be free from the tested virulence markers. All tested enterococci strains exhibited more than one of the tested enterocin. Interestingly, E. faecalis and E. faecium significantly restrained the growth of C. botulinum types A, B, D, and E. In conclusion, although, the data presented showed that bacteriocinogenic Enterococcus strains lacking of virulence determinants could be potentially used as a probiotic candidate against C. botulinum in vitro; however, further investigations are still urgently required to verify the beneficial effects of the tested Enterococcus spp. in vivo.  相似文献   

16.

Key message

Seed weight QTL identified in different populations were synthesized into consensus QTL which were shown to harbor candidate genes by in silico mapping. Allelic variation inferred would be useful in breeding B. juncea lines with high seed weight.

Abstract

Seed weight is an important yield influencing trait in oilseed Brassicas and is a multigenic trait. Among the oilseed Brassicas, Brassica juncea harbors the maximum phenotypic variation wherein thousand seed weight varies from around 2.0 g to more than 7.0 g. In this study, we have undertaken quantitative trait locus/quantitative trait loci (QTL) analysis of seed weight in B. juncea using four bi-parental doubled-haploid populations. These four populations were derived from six lines (three Indian and three east European lines) with parental phenotypic values for thousand seed weight ranging from 2.0 to 7.6 g in different environments. Multi-environment QTL analysis of the four populations identified a total of 65 QTL ranging from 10 to 25 in each population. Meta-analysis of these component QTL of the four populations identified six ‘consensus’ QTL (C-QTL) in A3, A7, A10 and B3 by merging 33 of the 65 component Tsw QTL from different bi-parental populations. Allelic diversity analysis of these six C-QTL showed that Indian lines, Pusajaikisan and Varuna, hold the most positive allele in all the six C-QTL. In silico mapping of candidate genes with the consensus QTL localized 11 genes known to influence seed weight in Arabidopsis thaliana and also showed conserved crucifer blocks harboring seed weight QTL between the A subgenomes of B. juncea and B. rapa. These findings pave the way for a better understanding of the genetics of seed weight in the oilseed crop B. juncea and reveal the scope available for improvement of seed weight through marker-assisted breeding.
  相似文献   

17.
Galleria mellonella has been described as a cheap and an easy-to-reproduce model for the study of fungal infections. We hypothesized that yeasts with higher virulence potential decrease survival and significantly trigger an immune response in G. mellonella through the regulation of innate immunity-related genes encoding antimicrobial peptides (AMPs) such as gallerimycin and galiomicin. Candida albicans SC5314 and Candida dubliniensis CBS 7987, selected because of their different virulence potential, were used for a killing assay followed by the determination of gene expression using qPCR. In vivo results confirmed a significantly (p?=?0.0321) lower pathogenicity for C. dubliniensis than for C. albicans. Accordingly, the induction of C. dubliniensis AMPs was lower at all the selected time points post-infection (1 h, 24 h, 48 h). Moreover, we observed an extremely high regulation of the galiomicin gene compared to the gallerimycin one, suggesting a different role of the tested AMPs in protecting G. mellonella from candidiasis.  相似文献   

18.
A mapping population of 126 doubled haploid (DH) lines derived from a cross between the English winter wheat cultivars Spark and Rialto was evaluated for response to Puccinia graminis f. sp. tritici in the greenhouse and in artificially inoculated field plots at two locations over 3 years (2011, 2012 and 2013). Genetic analysis indicated the involvement of two seedling genes (Sr5 and Sr31, contributed by Rialto) and three adult plant resistance genes. QTL analyses of field data showed the involvement of three consistent effects QTL on chromosome arms 1BS (contributed by Rialto), and 3BS and chromosome 5A (contributed by Spark) in the observed resistance to stem rust. These QTLs explained average phenotypic variation of 78.5, 9.0 and 5.9 %, respectively. With the presence of virulence for Sr5 and absence of Sr31 virulence in the field, the QTL detected on 1BS (QSr.sun-1BS) was attributed to the major seedling resistance gene Sr31. The QTL located on chromosome arm 3BS (QSr.sun-3BS) was closely associated with SSR marker gwm1034, and the QTL detected on 5A (QSr.sun-5A) was closely linked with SSR marker gwm443. DH lines carrying the combination of QSr.sun-3BS and QSr.sun-5A exhibited lower stem rust responses indicating the additive effects of the two APR genes in reducing disease severity. The markers identified in this study can be useful in pyramiding these QTLs with other major or minor genes and marker assisted selection for stem rust resistance in wheat.  相似文献   

19.

Key message

Development of the first consensus genetic map of intermediate wheatgrass gives insight into the genome and tools for molecular breeding.

Abstract

Intermediate wheatgrass (Thinopyrum intermedium) has been identified as a candidate for domestication and improvement as a perennial grain, forage, and biofuel crop and is actively being improved by several breeding programs. To accelerate this process using genomics-assisted breeding, efficient genotyping methods and genetic marker reference maps are needed. We present here the first consensus genetic map for intermediate wheatgrass (IWG), which confirms the species’ allohexaploid nature (2n = 6x = 42) and homology to Triticeae genomes. Genotyping-by-sequencing was used to identify markers that fit expected segregation ratios and construct genetic maps for 13 heterogeneous parents of seven full-sib families. These maps were then integrated using a linear programming method to produce a consensus map with 21 linkage groups containing 10,029 markers, 3601 of which were present in at least two populations. Each of the 21 linkage groups contained between 237 and 683 markers, cumulatively covering 5061 cM (2891 cM––Kosambi) with an average distance of 0.5 cM between each pair of markers. Through mapping the sequence tags to the diploid (2n = 2x = 14) barley reference genome, we observed high colinearity and synteny between these genomes, with three homoeologous IWG chromosomes corresponding to each of the seven barley chromosomes, and mapped translocations that are known in the Triticeae. The consensus map is a valuable tool for wheat breeders to map important disease-resistance genes within intermediate wheatgrass. These genomic tools can help lead to rapid improvement of IWG and development of high-yielding cultivars of this perennial grain that would facilitate the sustainable intensification of agricultural systems.
  相似文献   

20.

Key message

Resistance factors against non-adapted powdery mildews were mapped in barley. Some QTLs seem effective only to non-adapted mildews, while others also play a role in defense against the adapted form.The durability and effectiveness of nonhost resistance suggests promising practical applications for crop breeding, relying upon elucidation of key aspects of this type of resistance. We investigated which genetic factors determine the nonhost status of barley (Hordeum vulgare L.) to powdery mildews (Blumeria graminis). We set out to verify whether genes involved in nonhost resistance have a wide effectiveness spectrum, and whether nonhost resistance genes confer resistance to the barley adapted powdery mildew. Two barley lines, SusBgtSC and SusBgtDC, with some susceptibility to the wheat powdery mildew B. graminis f.sp. tritici (Bgt) were crossed with cv Vada to generate two mapping populations. Each population was assessed for level of infection against four B. graminis ff.spp, and QTL mapping analyses were performed. Our results demonstrate polygenic inheritance for nonhost resistance, with some QTLs effective only to non-adapted mildews, while others play a role against adapted and non-adapted forms. Histology analyses of nonhost interaction show that most penetration attempts are stopped in association with papillae, and also suggest independent layers of defence at haustorium establishment and conidiophore formation. Nonhost resistance of barley to powdery mildew relies mostly on non-hypersensitive mechanisms. A large-effect nonhost resistance QTL mapped to a 1.4 cM interval is suitable for map-based cloning.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号