首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanocrystalline La1‐xSrxCoO3‐δ (LSC) thin films with a nominal Sr‐content of x = 0.4 were deposited on Ce0.9Gd0.1O1.95 electrolyte substrates using a low temperature sol‐gel process. The structural and chemical properties of the LSC thin films were studied after thermal treatment, which included a calcination step and a variable, extended annealing time at 700 °C or 800 °C. Transmission electron microscopy combined with selected‐area electron diffraction, energy‐dispersive X‐ray spectrometry, and scanning transmission electron microscopy tomography was applied for the investigation of grain size, porosity, microstructure, and analysis of the local chemical composition and element distribution on the nanoscale. The area specific resistance (ASR) values of the thin film LSC cathodes, which include the lowest ASR value reported so far (ASRchem = 0.023 Ωcm2 at 600 °C) can be interpreted on the basis of the structural and chemical characterization.  相似文献   

2.
It is shown that an electrochemically‐driven oxide overcoating substantially improves the performance of metal electrodes in high‐temperature electrochemical applications. As a case study, Pt thin films are overcoated with (Pr,Ce)O2?δ (PCO) by means of a cathodic electrochemical deposition process that produces nanostructured oxide layers with a high specific surface area and uniform metal coverage and then the coated films are examined as an O2‐electrode for thin‐film‐based solid oxide fuel cells. The combination of excellent conductivity, reactivity, and durability of PCO dramatically improves the oxygen reduction reaction rate while maintaining the nanoscale architecture of PCO layers and thus the performance of the PCO‐coated Pt thin‐film electrodes at high temperatures. As a result, with an oxide coating step lasting only 5 min, the electrode resistance is successfully reduced by more than 1000 times at 500 °C in air. These observations provide a new direction for the design of high‐performance electrodes for high‐temperature electrochemical cells.  相似文献   

3.
Nanocrystalline La1‐xSrxCoO3‐δ (LSC) thin films with a nominal Sr‐content of x = 0.4 were deposited on Ce0.9Gd0.1O1.95 electrolyte substrates using a low temperature sol‐gel process. The structural and chemical properties of the LSC thin films were studied after thermal treatment, which included a calcination step and a variable, extended annealing time at 700 °C or 800 °C. Transmission electron microscopy combined with selected‐area electron diffraction, energy‐dispersive X‐ray spectrometry, and scanning transmission electron microscopy tomography was applied for the investigation of grain size, porosity, microstructure, and analysis of the local chemical composition and element distribution on the nanoscale. The area specific resistance (ASR) values of the thin film LSC cathodes, which include the lowest ASR value reported so far (ASRchem = 0.023 Ωcm2 at 600 °C) can be interpreted on the basis of the structural and chemical characterization.  相似文献   

4.
BaZr0.7Sn0.1Y0.2O3–δ (BZSY) is developed as a novel chemically stable proton conductor for solid oxide fuel cells (SOFCs). BZSY possesses the same cubic symmetry of space group Pm‐3m with BaZr0.8Y0.2O3‐δ (BZY). Thermogravimetric analysis (TGA) and X‐ray photoelectron spectra (XPS) results reveal that BZSY exhibits remarkably enhanced hydration ability compared to BZY. Correspondingly, BZSY shows significantly improved electrical conductivity. The chemical stability test shows that BZSY is quite stable under atmospheres containing CO2 or H2O. Fully dense BZSY electrolyte films are successfully fabricated on NiO–BZSY anode substrates followed by co‐firing at 1400 °C for 5 h and the film exhibits excellent electrical conductivity under fuel cell conditions. The single cell with a 12‐μm‐thick BZSY electrolyte film outputs by far the best performance for acceptor‐doped BaZrO3‐based SOFCs. With wet hydrogen (3% H2O) as the fuel and static air as the oxidant, the peak power density of the cell achieves as high as 360 mWcm?2 at 700 °C, an increase of 42% compared to the reported highest performance of BaZrO3‐based cells. The encouraging results demonstrate that BZSY is a good candidate as the electrolyte material for next generation high performance proton‐conducting SOFCs.  相似文献   

5.
Tris‐(8‐hydroxyquionoline)aluminum (Alq3) was synthesized and coated on to a glass substrate using the dip coating method. The structural and optical properties of the Alq3 film after thermal annealing from 50°C to 300°C in 50° steps was studied. The films have been prepared with 2 to 16 layers (42–324 nm). The thickness and thermal annealing of Alq3 films were optimized for maximum luminescence yield. The Fourier transform infrared spectrum confirms the formation of quinoline with absorption in the region 700 ? 500/cm. Partial sublimation and decomposition of quinoline ion was observed with the Alq3 films annealed at 300°C. The X‐ray diffraction pattern of the Alq3 film annealed at 50°C to 150°C reveals the amorphous nature of the films. The Alq3 film annealed above 150°C were crystalline nature. Film annealed at 150°C exhibits a photoluminescence intensity maximum at 512 nm when excited at 390 nm. The Alq3 thin film deposited with 10 layers (220 nm) at 150°C exhibited maximum luminescence yield. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Iron pyrite (cubic FeS2) is a promising candidate absorber material for earth‐abundant thin‐film solar cells. In this report, single‐phase, large‐grain, and uniform polycrystalline pyrite thin films are fabricated on glass and molybdenum‐coated glass substrates by atmospheric‐pressure chemical vapor deposition (AP‐CVD) using the reaction of iron(III) acetylacetonate and tert‐butyl disulfide in argon at 300 °C, followed by sulfur annealing at 500–550 °C to convert marcasite impurities to pyrite. The pyrite‐marcasite phase composition depends strongly on the concentration of sodium in the growth substrate and the sulfur partial pressure during annealing. Phase and elemental composition of the films are characterized by X‐ray diffraction, Raman spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, Rutherford backscattering spectrometry, and X‐ray photoelectron spectroscopy. The in‐plane electrical properties are surprisingly insensitive to phase and elemental impurities, with all films showing p‐type, thermally activated transport with a small activation energy (≈30 meV), a room‐ temperature resistivity of ≈1 Ω cm, and low mobility. These ubiquitous electrical properties may result from robust surface effects. These CVD pyrite thin films are well suited to fundamental electrical studies and the fabrication of pyrite photovoltaic device stacks.  相似文献   

7.
14C‐labelled straw was mixed with soils collected from seven coniferous forests located on a climatic gradient in Western Europe ranging from boreal to Mediterranean conditions. The soils were incubated in the laboratory at 4°, 10°, 16°, 23° and 30 °C with constant moisture over 550 days. The temperature coefficient (Q10) for straw carbon mineralization decreased with increasing incubation temperatures. This was a characteristic of all the soils with a difference of two Q10 units between the 4–10° and the 23? 30 °C temperature ranges. It was also found that the magnitude of the temperature response function was related to the period of soil incubation. Initial temperature responses of microbial communities were different to those shown after a long period of laboratory incubation and may have reflected shifts in microbial species composition in response to changes in the temperature regime. The rapid exhaustion of the labile fractions of the decomposing material at higher temperatures could also lead to underestimation of the temperature sensitivity of soils unless estimated for carbon pools of similar qualities. Finally, the thermal optima for the organic soil horizons (Of and Oh) were lower than 30 °C even after 550 days of incubation. It was concluded that these responses could not be attributed to microbial physiological adaptations, but rather to the rates at which recalcitrant microbial secondary products were formed at higher temperatures. The implication of these variable temperature responses of soil materials is discussed in relation to modelling potential effects of global warming.  相似文献   

8.
Partially amorphous La0.6Sr0.4CoO3‐δ (LSC) thin‐film cathodes are fabricated using pulsed laser deposition and are integrated in free‐standing micro‐solid oxide fuel cells (micro‐SOFC) with a 3YSZ electrolyte and a Pt anode. A low degree of crystallinity of the LSC layers is achieved by taking advantage of the miniaturization of the cells, which permits low‐temperature operation (300–450 °C). Thermomechanically stable micro‐SOFC are obtained with strongly buckled electrolyte membranes. The nanoporous columnar microstructure of the LSC layers provides a large surface area for oxygen incorporation and is also believed to reduce the amount of stress at the cathode/electrolyte interface. With a high rate of failure‐free micro‐SOFC membranes, it is possible to avoid gas cross‐over and open‐circuit voltages of 1.06 V are attained. First power densities as high as 200–262 mW cm?2 at 400–450 °C are achieved. The area‐specific resistance of the oxygen reduction reaction is lower than 0.3 Ω cm2 at 400 °C around the peak power density. These outstanding findings demonstrate that partially amorphous oxides are promising electrode candidates for the next‐generation of solid oxide fuel cells working at low‐temperatures.  相似文献   

9.
10.
High‐power, durable composite fuel cell membranes are fabricated here by direct membrane deposition (DMD). Poly(vinylidene fluoride‐co ‐hexafluoropropylene) (PVDF‐HFP) nanofibers, decorated with CeO2 nanoparticles are directly electrospun onto gas diffusion electrodes. The nanofiber mesh is impregnated by inkjet‐printed Nafion ionomer dispersion. This results in 12 µm thin multicomponent composite membranes. The nanofibers provide membrane reinforcement, whereas the attached CeO2 nanoparticles promote improved chemical membrane durability due to their radical scavenging properties. In a 100 h accelerated stress test under hot and dry conditions, the reinforced DMD fuel cell shows a more than three times lower voltage decay rate (0.39 mV h?1) compared to a comparably thin Gore membrane (1.36 mV h?1). The maximum power density of the DMD fuel cell drops by 9%, compared to 54% measured for the reference. Impedance spectroscopy reveals that ionic and mass transport resistance of the DMD fuel cell are unaffected by the accelerated stress test. This is in contrast to the reference, where a 90% increase of the mass transport resistance is measured. Energy dispersive X‐ray spectroscopy reveals that no significant migration of cerium into the catalyst layers occurs during degradation. This proves that the PVDF‐HFP backbone provides strong anchoring of CeO2 in the membrane.  相似文献   

11.
Subzero‐temperature Li‐ion batteries (LIBs) are highly important for specific energy storage applications. Although the nickel‐rich layered lithium transition metal oxides(LiNixCoyMnzO2) (LNCM) (x > 0.5, x + y +z = 1) are promising cathode materials for LIBs, their very slow Li‐ion diffusion is a main hurdle on the way to achieve high‐performance subzero‐temperature LIBs. Here, a class of low‐temperature organic/inorganic hybrid cathode materials for LIBs, prepared by grafting a conducting polymer coating on the surface of 3 µm sized LiNi0.6Co0.2Mn0.2O2 (LNCM‐3) material particles via a greener diazonium soft‐chemistry method is reported. Specifically, LNCM‐3 particles are uniformly coated with a thin polyphenylene film via the spontaneous reaction between LNCM‐3 and C6H5N2+BF4?. Compared with the uncoated one, the polyphenylene‐coated LNCM‐3 (polyphenylene/LNCM‐3) has shown much improved low‐temperature discharge capacity (≈148 mAh g?1 at 0.1 C, ?20 °C), outstanding rate capability (≈105 mAh g?1 at 1 C, ?20 °C), and superior low‐temperature long‐term cycling stability (capacity retention is up to 90% at 0.5 C over 1150 cycles). The low‐temperature performance of polyphenylene/LNCM‐3 is the best among the reported state‐of‐the art cathode materials for LIBs. The present strategy opens up a new avenue to construct advanced cathode materials for wider range applications.  相似文献   

12.
In this study, the complete foxl2 complementary (c)DNA sequence was isolated by simple modular‐architecture research tool (SMART)er rapid amplification of cDNA ends (RACE). Two year‐old female spotted scat, Scatophagus argus, were reared at different temperatures (23, 26 and 29° C) for 6 weeks, or fed with different concentrations of dietary fish oil (0, 2 or 6%) for 8 weeks. Ovarian development, serum oestradiol‐17β (E2) levels, as well as ovarian foxl2 expression were measured. At the end of experiment, ovarian foxl2 messenger (m)RNA expression in fish reared at 23 and 26° C was significantly higher than that in fish reared at 29° C, and that in 2 and 6% fish oil groups was also significantly higher than that in control group (P < 0·05). Serum E2 levels exhibited the same trend with foxl2 mRNA expression in temperature treatment groups and fish oil fed groups. There was a significant positive correlation between stage of oocytes and foxl2 expressions. Results showed that from 23 to 29° C, the optimal temperature for ovarian development in S. argus was 23–26° C, and 6% fish oil supplementation could effectively promote ovarian development. Optimal temperature and fish oil supplement might increase ovarian foxl2 mRNA expressions to promote ovarian development in S. argus.  相似文献   

13.
Elevated atmospheric CO2 concentration may result in increased below‐ground carbon allocation by trees, thereby altering soil carbon cycling. Seasonal estimates of soil surface carbon flux were made to determine whether carbon losses from Pinus radiata trees growing at elevated CO2 concentration were higher than those at ambient CO2 concentration, and whether this was related to increased fine root growth. Monthly soil surface carbon flux density (f) measurements were made on plots with trees growing at ambient (350) and elevated (650 μmol mol?1) CO2 concentration in large open‐top chambers. Prior to planting the soil carbon concentration (0.1%) and f (0.28 μmol m?2 s?1 at 15 °C) were low. A function describing the radial pattern of f with distance from tree stems was used to estimate the annual carbon flux from tree plots. Seasonal estimates of fine root production were made from minirhizotrons and the radial distribution of roots compared with radial measurements of f. A one‐dimensional gas diffusion model was used to estimate f from soil CO2 concentrations at four depths. For the second year of growth, the annual carbon flux from the plots was 1671 g y?1 and 1895 g y?1 at ambient and elevated CO2 concentrations, respectively, although this was not a significant difference. Higher f at elevated CO2 concentration was largely explained by increased fine root biomass. Fine root biomass and stem production were both positively related to f. Both root length density and f declined exponentially with distance from the stem, and had similar length scales. Diurnal changes in f were largely explained by changes in soil temperature at a depth of 0.05 m. Ignoring the change of f with increasing distance from tree stems when scaling to a unit ground area basis from measurements with individual trees could result in under‐ or overestimates of soil‐surface carbon fluxes, especially in young stands when fine roots are unevenly distributed.  相似文献   

14.
The understanding and control of nanostructures with regard to transport and recombination mechanisms is of key importance in the optimization of the power conversion efficiency (PCE) of solar cells based on inorganic nanocrystals. Here, the transport properties of solution‐processed solar cells are investigated using photo‐CELIV (photogenerated charge carrier extraction by linearly increasing voltage) and transient photovoltage techniques; the solar cells are prepared by an in‐situ formation of CuInS2 nanocrystals (CIS NCs) at the low temperature of 270 °C. Structural and morphological analyses reveal the presence of a metastable CuIn5S8 phase and a disordered morphology in the CuInS2 nanocrytalline films consisting of polycrystalline grains at the nanoscale range. Consistent with the disordered morphology of the CIS NC thin films, the CIS NC devices are characterized by a low carrier mobility. The carrier density dynamic indicates that the recombination kinetics in these devices follows the dispersive bimolecular recombination model and does not fully behave in a diffusion‐controlled manner, as expected by Langevin‐type recombination. The mobility–lifetime product of the charge carriers properly explains the performance of the thin (200 nm) CIS NC solar cell with a high fill‐factor of 64% and a PCE of over 3.5%.  相似文献   

15.
Doped perovskite oxides with the general formula of AxA′1?xByB′1?yO3 have been extensively exploited as the cathode materials of solid oxide fuel cells (SOFCs), but the performance at low‐to‐medium temperatures still needs improvement. BaCo0.4Fe0.4Zr0.1Y0.1O3?δ (BCFZY) has been recently reported to show promising oxygen reduction reaction (ORR) activity under SOFCs' operating conditions. Here, it is reported that the activity of BCFZY can be further boosted via introducing a slight B‐site cation deficiency into the oxide lattice, and such an improvement is assigned to an increase in oxygen mobility that brings enhancement in both surface exchange and bulk diffusion kinetics. Specifically, materials with the nominal composition of Ba(Co0.4Fe0.4Zr0.1Y0.1)0.975O3?δ and Ba(Co0.4Fe0.4Zr0.1Y0.1)0.95O3?δ show significantly improved activity for ORR at reduced temperatures with the area specific resistances of 0.011 and 0.024 Ω cm2 at 600 °C, as a comparison of 0.042 Ω cm2 for the cation stoichiometric BCFZY. Excessive B‐site deficiencies, however, lead to the formation of impurity phases, which cause a block for charge transfer and, consequently, a reduction in electrode performance. Introducing a B‐site cation deficiency is a promising way to optimize the activity of perovskite oxides for ORR at reduced temperatures, but the degree of deficiency shall be carefully tuned.  相似文献   

16.
This study demonstrates for the first time a room temperature sodium–sulfur (RT Na–S) full cell assembled based on a pristine hard carbon (HC) anode combined with a nanostructured Na2S/C cathode. The development of cells without the demanding, time‐consuming and costly pre‐sodiation of the HC anode is essential for the realization of practically relevant RT Na–S prototype batteries. New approaches for Na2S/C cathode fabrication employing carbothermal reduction of Na2SO4 at varying temperatures (660 to 1060 °C) are presented. Initial evaluation of the resulting cathodes in a dedicated cell setup reveals 36 stable cycles and a capacity of 740 mAh gS?1, which correlates to ≈85% of the maximum value known from literature on Na2S‐based cells. The Na2S/C cathode with the highest capacity utilization is implemented into a full cell concept applying a pristine HC anode. Various full cell electrolyte compositions with fluoroethylene carbonate (FEC) additive have been combined with a special charging procedure during the first cycle supporting in situ solid electrolyte interphase (SEI) formation on the HC anode to obtain increased cycling stability and cathode utilization. The best performing cell setup has delivered a total of 350 mAh gS?1, representing the first functional full cell based on a Na2S/C cathode and a pristine HC anode today.  相似文献   

17.
Two different α‐glucosidase‐producing thermophilic E134 strains were isolated from a hot spring in Kozakli, Turkey. Based on the phenotypic, phylogenetic and chemotaxonomic evidence, the strain was proposed to be a species of G. toebii. Its thermostable exo‐α‐1,4‐glucosidases also were characterized and compared, which were purified from the intracellular and extracellular fractions with estimated molecular weights of 65 and 45 kDa. The intracellular and extracellular α‐glucosidases showed optimal activity at 65 °C, pH 7·0, and at 70 °C, pH 6·8, with 3·65 and 0·83 Km values for the pNPG substrate, respectively. Both enzymes remained active over temperature and pH ranges of 35–70 °C and 4·5–11·0. They retained 82 and 84% of their activities when incubated at 60 °C for 5 h. Their relative activities were 45–75% and 45–60% at pH 4·5 and 11·0 values for 15 h at 35 °C. They could hydrolyse the α‐1,3 and α‐1,4 bonds on substrates in addition to a high transglycosylation activity, although the intracellular enzyme had more affinity to the substrates both in hydrolysis and transglycosylation reactions. Furthermore, although sodium dodecyl sulfate behaved as an activator for both of them at 60 °C, urea and ethanol only increased the activity of the extracellular α‐glucosidase. By this study, G. toebii E134 strain was introduced, which might have a potential in biotechnological processes when the conformational stability of its enzymes to heat, pH and denaturants were considered. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The effects of temperature on the development and survival of Lycaeides argyrognomon were examined in the laboratory. The eggs, larvae and pupae were reared at temperatures of 15, 17.5, 20, 25, 30 and 33°C under a long‐day photoperiod of 16‐h light and 8‐h darkness. The survival rates of the first–third instars ranged from 40.0 to 82.4%. The mortalities of the fourth instar were lower than those of the first–third instars. The development time of the overall immature stage decreased from 78.33 days at 15°C to 21.07 days at 30°C, and then increased to 24.33 days at 33°C. The common linear model and the Ikemoto–Takai model were used to estimate the thermal constant (K) and the developmental zero (T0). The values of T0 and K for the overall immature stages were 10.50°C and 418.83 degree‐days, and 9.71°C and 451.68 degree‐days by the common model and the Ikemoto–Takai model, respectively. The upper temperature thresholds (Tmax) and the optimal temperatures (Topt) of the egg, the first–third instars and the overall immature stages were estimated by the three nonlinear models. The ranges of Topt estimated were from 30.33°C to 32.46°C in the overall immature stages and the estimates of Tmax of the overall immature stages by the Briere‐1 and the Briere‐2 models were 37.18°C and 33.00°C, respectively. The method to predict the developmental period of L. argyrognomon using the nonlinear models was discussed based on the data of the average temperature per hour.  相似文献   

19.
In this study biodegradation of hydrocarbons in thin oil films was investigated in seawater at low temperatures, 0 and 5 °C. Heterotrophic (HM) or oil-degrading (ODM) microorganisms enriched at the two temperatures showed 16S rRNA sequence similarities to several bacteria of Arctic or Antarctic origin. Biodegradation experiments were conducted with a crude mineral oil immobilized as thin films on hydrophobic Fluortex adsorbents in nutrient-enriched or sterile seawater. Chemical and respirometric analysis of hydrocarbon depletion showed that naphthalene and other small aromatic hydrocarbons (HCs) were primarily biodegraded after dissolution to the water phase, while biodegradation of larger polyaromatic hydrocarbons (PAH) and C10–C36 n-alkanes, including n-hexadecane, was associated primarily with the oil films. Biodegradation of PAH and n-alkanes was significant at both 0 and 5°C, but was decreased for several compounds at the lower temperature. n-Hexadecane biodegradation at the two temperatures was comparable at the end of the experiments, but was delayed at 0°C. Investigations of bacterial communities in seawater and on adsorbents by PCR amplification of 16S rRNA gene fragments and DGGE analysis indicated that predominant bacteria in the seawater gradually adhered to the oil-coated adsorbents during biodegradation at both temperatures. Sequence analysis of most DGGE bands aligned to members of the phyla Proteobacteria (Gammaproteobacteria) or Bacteroidetes. Most sequences from experiments at 0°C revealed affiliations to members of Arctic or Antarctic consortia, while no such homology was detected for sequences from degradation experiment run at 5°C. In conclusion, marine microbial communities from cold seawater have potentials for oil film HC degradation at temperatures ≤5°C, and psychrotrophic or psychrophilic bacteria may play an important role during oil HC biodegradation in seawater close to freezing point.  相似文献   

20.
Metal‐halide perovskites show promise as highly efficient solar cells, light‐emitting diodes, and other optoelectronic devices. Ensuring long‐term stability is now a major priority. In this study, an ultrathin (2 nm) layer of polyethylenimine ethoxylated (PEIE) is used to functionalize the surface of C60 for the subsequent deposition of atomic layer deposition (ALD) SnO2, a commonly used electron contact bilayer for p–i–n devices. The enhanced nucleation results in a more continuous initial ALD SnO2 layer that exhibits superior barrier properties, protecting Cs0.25FA0.75Pb(Br0.20I0.80)3 films upon direct exposure to high temperatures (200 °C) and water. This surface modification with PEIE translates to more stable solar cells under aggressive testing conditions in air at 60 °C under illumination. This type of “built‐in” barrier layer mitigates degradation pathways not addressed by external encapsulation, such as internal halide or metal diffusion, while maintaining high device efficiency up to 18.5%. This nucleation strategy is also extended to ALD VOx films, demonstrating its potential to be broadly applied to other metal oxide contacts and device architectures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号