首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The enamel microstructure in molars of Arsinoitherium is reinvestigated and a new modification of radial enamel (RE), ‘arsinoitheriid radial enamel (ARE)’, is defined. It is characterised by alternating stripes with different organisation of the interprismatic matrix but no prism decussation. Recognition of this new subtype leads to a reinterpretation of structure previously identified as modified radial enamel and of Hunter–Schreger bands in Arsinoitherium. The newly differentiated ARE of Arsinoitherium is more derived in relation to corresponding microstructures of Palaeoamasia and Crivadiatherium. A careful reinvestigation of RE in other Paenungulata will be required to provide additional data bearing on phylogenetic reconstruction. The enamel of Phenacolophus argues against inclusion of this genus in the Embrithopoda.  相似文献   

2.
We present new material of the selenodont anthracothere Hemimeryx blanfordi from the Oligocene deposits of the Bugti Hills (Balochistan, Pakistan), collected between 1999 and 2002. This is the first undisputed Oligocene occurrence of the species, previously known from the early Miocene of Pakistan. Investigation of the molar enamel microstructure reveals a surprising mono-zonal Schmelzmuster, already detected in some middle to Late miocene selenedont anthracotheres. We include this observation combined with a morphological revision of H. blanfordi and a cladistic assessment of the dental evidence, to propose a new phylogenetic hypothesis regarding Hemimeryx and its close relatives. We confirm the clade including advanced bothriodontines, which we erect to a tribe rank and name Merycopotamini. The South Asian origin of Merycopotamini is consistent with hypothesized subsequent dispersal events of Merycopotamini from Asia to Africa.  相似文献   

3.
Enamel distribution on the upper and lower incisors ofTribosphenomys minutus (from Late Paleocene-Early Eocene of Inner Mongolia of China) is typically rodent-like, i.e., primarily confined to the anterior surface throughout these transversely compressed, evergrowing teeth. AlthoughTribosphenomys incisor enamel is differentiated into two layers, it does not possess Hunter-Schreger bands (HSB). The incisor and molar enamels are radial in type, a condition regarded as either an autapomorph or a primtive retention forTribosphenomys. Character polarities concerning enamel thickness, enamel layer number, HSB, enamel types, and functional and phylogenetic implications of the enamel structures are discussed. Overall, enamel microstructural evolution at high taxonomic levels within Glires displays considerably more homoplasy than generally appreciated. A phylogenetic definition of Rodentia is proposed.Tribosphenomys is the sister-group of a taxon here named Rodentia, and thus is not itself a member of the order, from a systematic viewpoint.  相似文献   

4.
Dental material of the South American elephantoid Cuvieronius hyodon from the Late Pleistocene of the Tarija Basin, Bolivia was sampled for a comprehensive analysis of the microstructure of the enamel. To examine variability at the dentition level, enamel samples of the upper incisor, second deciduous premolar, and molars were sectioned. The incisor and cheek teeth enamel is compared to that of other proboscideans in order to reveal phylogenetically and functional informative features useful to reconstruct the evolution of elephantoid enamel. Studies of the adaptations and evolution of proboscidean enamel have focused so far on molars. Nevertheless, given the possibility of an independent evolution of the enamel at different tooth positions, the variation of the enamel throughout the dentition needs to be taken into consideration when using enamel microstructural characters to infer proboscidean diversity and phylogeny. The results obtained from this study demonstrate the generality, among elephantoids, of the basic microstructural features of Cuvieronius hyodon enamel, allowing the characterization of the Elephantoid Enamel (EE). The differentiation between incisor and molar enamel seen in elephantoids is shown to represent a primitive elephantiform trait, as it also occurs in Phiomia. The three-layered enamel of the cheek teeth appears as the sole synapomorphy of the Elephantoidea, though the character might be homoplastic within the Proboscidea. Characters of the prisms cross-section might be used, on the other hand, to define less inclusive clades within the Elephantoidea.  相似文献   

5.
Orliac, M. J., Antoine, P. ‐O., Ducrocq, S. (2010). Phylogenetic relationships of the Suidae (Mammalia, Cetartiodactyla): new insights on the relationships within Suoidea. —Zoologica Scripta, 39, 315–330. In most analyses, both molecular and morphological phylogenies of the Cetartiodactyla support the monophyly of Suoidea. However, the evolutionary history of this superfamily remains poorly known primarily due to long‐lasting debates about the taxonomic content and relationships of the suoid families and subfamilies. Despite their crucial position in the reconstruction of the phylogeny of Cetartiodactyla, Suoidea themselves have received little attention in those phylogenies, and no extensive analysis of the group has been performed so far. We therefore examine the phylogeny of the Suidae through the first phylogenetic analysis of Suoidea, including recent and fossil representatives of all four putative families. The results support the monophyly of the traditional suid subfamilies and indicate the Sanitheriidae as sister taxon to the Suidae clade. The evolutionary history within Suidae reveals its complexity, with major convergences involving important morphological structures such as the auditory region or the upper male canine. Divergent signals gathered from either dental or cranio‐mandibular features are responsible for two long‐lasting unresolved issues within Suoidea: the question of the relationships between ‘Old World’ and ‘New World’ peccaries remaining unsolved, as well as the position and familial status of the mid‐Tertiary tayassuid Perchoerus.  相似文献   

6.
This study describes the molar enamel microstructure of seven lemurid primates: Hapalemur griseus, Varecia variegata, Lemur catta, Lemur macaco, Lemur fulvus rufus, Lemur fulvus fulvus, and Lemur fulvus albifrons. Contrary to earlier accounts, which reported little or no prism decussation in lemurid enamel, both Lemur and Varecia molars contain a prominent inner layer of decussating prisms (Hunter-Schreger bands), in addition to an outer radial prism layer, and a thin, nonprismatic enamel surface layer. In contrast, Hapalemur enamel consists entirely of radial and, near the surface, nonprismatic enamel. In addition, for all species, prism packing patterns differ according to depth from the tooth surface, and for all species but Varecia (which also has the thinnest enamel of any lemurid), average prism area increases from the enamel-dentine junction to the surface; this may be a developmental solution to the problem of accommodating a larger outer surface area with enamel deposited from a fixed number of cells. Finally, contradicting some previous reports, Pattern 1 prisms predominate only in the most superficial prismatic enamel. In the deeper enamel, prism cross-sections include both closed (Pattern 1) and arc-shaped (Pattern 2 or, most commonly, Pattern 3). This sequence of depth-related pattern change is repeated in all taxa. It should also be emphasized that all taxa can exhibit all three prism patterns in their mature enamel. The high degree of quantitative and qualitative variation in prism size, shape, and packing suggests that these features should be used cautiously in phylogenetic studies. Hapalemur is distinguished from the other lemurids by unique, medially constricted or rectangular prism cross-sections at an intermediate depth and the absence of prism decussation, but, without further assessment of character polarity, these differences do not clarify lemurid phylogenetic relations. Some characters of enamel microstructure may represent synapomorphies of Lemuridae, or of clades within Lemuridae, but homoplasy is likely to be common. Homoplasy of enamel characters may reflect functional constraints. © 1994 Wiley-Liss, Inc.  相似文献   

7.
The phylogenetic position of Cetacea (whales, dolphins and porpoises) is an important exemplar problem for combined data parsimony analyses because the clade is ancient and includes many well‐known and relatively complete fossil species. We combined data for 71 terminal taxa (43 extinct/28 extant) to test where Cetacea fits within Cetartiodactyla, and where various fossil hoofed mammals (e.g., ?entelodonts, “?anthracotheriids” and ?mesonychians) are positioned. We scored 635 phenotypic characters (osteology, dentition, soft tissue, behavior), approximately three times the number of characters in the last major analysis of this clade, and combined these with > 40 000 molecular characters, including new data from 10 genes. The analysis supported a topology consistent with the majority of recently published molecular studies. Cetacea was the extant sister taxon of Hippopotamidae, followed successively by Ruminantia, Suina and Camelidae. Several extinct taxa were phylogenetically unstable, upsetting resolution of the strict consensus and limiting branch support, but the positions of several key fossils were consistently resolved. The wholly extinct ?Mesonychia was more closely related to Cetacea than was any “artiodactylan.”“?Anthracotheriids” were paraphyletic, and, with the exception of one species, were more closely related to Hippopotamidae than to any other living taxon. The total evidence analysis overturned a highly nested position for Moschus supported by molecular data alone. The character partition that could be scored for the fossil taxa (osteological and dental characters) included more informative characters than most molecular partitions in our analysis, and had the fewest missing data. The osteological–dental data alone, however, did not support inclusion of cetaceans within crown “Artiodactyla.” Recently discovered ankle bones from fossil whales reinforced the monophyly of Cetartiodactyla but provided no particular evidence of derived similarities between hippopotamids and fossil cetaceans that were not shared with other “artiodactylans”. © The Willi Hennig Society 2007.  相似文献   

8.
Afropithecus turkanensis, a 17-17.5 million year old large-bodied hominoid from Kenya, has previously been reported to be the oldest known thick-enamelled Miocene ape. Most investigations of enamel thickness in Miocene apes have been limited to opportunistic or destructive studies of small samples. Recently, more comprehensive studies of enamel thickness and microstructure in Proconsul, Lufengpithecus, and Dryopithecus, as well as extant apes and fossil humans, have provided information on rates and patterns of dental development, including crown formation time, and have begun to provide a comparative context for interpretation of the evolution of these characters throughout the past 20 million years of hominoid evolution. In this study, enamel thickness and aspects of the enamel microstructure in two A. turkanensis second molars were quantified and provide insight into rates of enamel apposition, numbers of cells actively secreting enamel, and the time required to form regions of the crown. The average value for relative enamel thickness in the two molars is 21.4, which is a lower value than a previous analysis of this species, but which is still relatively thick compared to extant apes. This value is similar to those of several Miocene hominoids, a fossil hominid, and modern humans. Certain aspects of the enamel microstructure are similar to Proconsul nyanzae, Dryopithecus laietanus, Lufengpithecus lufengensis, Graecopithecus freybergi and Pongo pygmaeus, while other features differ from extant and fossil hominoids. Crown formation times for the two teeth are 2.4-2.6 years and 2.9-3.1 years respectively. These times are similar to a number of extant and fossil hominoids, some of which appear to show additional developmental similarities, including thick enamel. Although thick enamel may be formed through several developmental pathways, most Miocene hominoids and fossil hominids with relatively thick enamel are characterized by a relatively long period of cuspal enamel formation and a rapid rate of enamel secretion throughout the whole cusp, but a shorter total crown formation time than thinner-enamelled extant apes.  相似文献   

9.
The fossil record of the Hippopotamidae can shed light on three major issues in mammalian evolution. First, as the Hippopotamidae are the extant sister group of Cetacea, gaining a better understanding of the origin of the Hippopotamidae and of their Paleogene ancestors will be instrumental in clarifying phylogenetic relationships within Cetartiodactyla. Unfortunately, the data relevant to hippopotamid origins have generally been ignored in phylogenetic analyses of cetartiodactyls. In order to obtain better resolution, future analyses should consider hypotheses of hippopotamid Paleogene relationships. Notably, an emergence of the Hippopotamidae from within anthracotheriids has received growing support, leading to reconciliation between genetic and morphological evidence for the clade Cetancodonta (Hippopotamidae + Cetacea). Secondly, full account needs to be taken of the Hippopotamidae when studying the impact of environmental change on faunal evolution. This group of semi‐aquatic large herbivores has a clear and distinct ecological role and a diverse and abundant fossil record, particularly in the African Neogene. We examine three major phases of hippopotamid evolution, namely the sudden appearance of hippopotamines in the late Miocene (the “Hippopotamine Event”), the subsequent rampant endemism in African basins, and the Pleistocene expansion of Hippopotamus. Each may have been influenced by multiple factors, including: late Miocene grass expansion, African hydrographical network disruption, and a unique set of adaptations that allowed Hippopotamus to respond efficiently to early Pleistocene environmental change. Thirdly, the fossil record of the Hippopotamidae documents the independent emergence of adaptive character complexes in relation to semiaquatic habits and in response to insular isolation. The semiaquatic specializations of fossil hippopotamids are particularly useful in interpreting the functional morphology and ecology of other, extinct groups of large semiaquatic herbivores. Hippopotamids can also serve as models to elucidate the evolutionary dynamics of island mammals.  相似文献   

10.
Blue sheep, Pseudois nayaur, is endemic to the Tibetan Plateau and the surrounding mountains, which are the highest‐elevation areas in the world. Classical morphological taxonomy suggests that there are two subspecies in genus Pseudois (Bovidae, Artiodactyla), namely Pseudois nayaur nayaur and Pseudois nayaur szechuanensis. However, the validity and geographic characteristics of these subspecies have never been carefully discussed and analyzed. This may be partially because previous studies have mainly focused on the vague taxonomic status of Pseudois schaeferi (dwarf blue sheep). Thus, there is an urgent need to investigate the evolutionary relationship and taxonomy system of this genus. This study enriches a previous dataset by providing a large number of new samples, based on a total of 225 samples covering almost the entire distribution of blue sheep. Molecular data from cytochrome b and the mitochondrial control region sequences were used to reconstruct the phylogeny of this species. The phylogenetic inferences show that vicariance plays an important role in diversification within this genus. In terms of molecular dating results and biogeographic analyses, the striking biogeographic pattern coincides significantly with major geophysical events. Although the results raise doubt about the present recognized distribution range of blue sheep, they have corroborated the validity of the identified subspecies in genus Pseudois. Meanwhile, these results demonstrate that the two geographically distinct populations, the Helan Mountains and Pamir Plateau populations, have been significantly differentiated from the identified subspecies, a finding that challenges the conventional taxonomy of blue sheep.  相似文献   

11.
We describe the first endocast reconstruction of a hyaenodont mammal based on X‐ray microtomography. The endocast belongs to the type material of the European hyaenodont Proviverra typica. We performed phylogenetic analysis to contextualize the evolution of endocranial size and complexity in Hyaenodonta. We added several European hyaenodonts and modified several codings of the most recent character–taxon matrix established to question the relationships within Hyaenodonta. Including these new species in a phylogenetic analysis reveals a new clade: Hyaenodontoidea. Comparisons with several previously described endocasts show that there was an increase in complexity in the convolutions of the encephalon within Hyaenodontidae history. Moreover, the analysis of the encephalization quotient reveals that the endocranium of the Hyaenodonta is not smaller than those of fossil Carnivora or some extant Carnivora. Therefore, the extinction of Hyaenodonta may not be linked to the relative size of hyaenodont brains.  相似文献   

12.
《Systematic Entomology》2018,43(1):68-89
Cerambycidae is a species‐rich family of mostly wood‐feeding (xylophagous) beetles containing nearly 35 000 known species. The higher‐level phylogeny of C erambycidae has never been robustly reconstructed using molecular phylogenetic data or a comprehensive sample of higher taxa, and its internal relationships and evolutionary history remain the subjects of ongoing debate. We reconstructed the higher‐level phylogeny of C erambycidae using phylogenomic data from 522 single copy nuclear genes, generated via anchored hybrid enrichment. Our taxon sample (31 C hrysomeloidea, four outgroup taxa: two C urculionoidea and two C ucujoidea) included exemplars of all families and 23 of 30 subfamilies of C hrysomeloidea (18 of 19 non‐chrysomelid C hrysomeloidea), with a focus on the large family C erambycidae. Our results reveal a monophyletic C erambycidae s.s. in all but one analysis, and a polyphyletic C erambycidae s.l. When monophyletic, C erambycidae s.s. was sister to the family D isteniidae. Relationships among the subfamilies of C erambycidae s.s. were also recovered with strong statistical support except for C erambycinae being made paraphyletic by Dorcasomus A udinet‐S erville (D orcasominae) in the nucleotide (but not amino acid) trees. Most other chrysomeloid families represented by more than one terminal taxon – C hrysomelidae, D isteniidae, V esperidae and O rsodacnidae – were monophyletic, but M egalopodidae was rendered paraphyletic by Cheloderus G ray (O xypeltidae). Our study corroborates some relationships within C hrysomeloidea that were previously inferred from morphological data, while also reporting several novel relationships. The present work thus provides a robust framework for future, more deeply taxon‐sampled, phylogenetic and evolutionary studies of the families and subfamilies of C erambycidae s.l. and other C hrysomeloidea.  相似文献   

13.
The evolutionary pattern of the molar morphology of the small caviomorph (Octodontidae) Neophanomys from the late Miocene Cerro Azul Formation of central Argentina is analyzed. Two new species (chronomorphs) are recognized, which constitute an anagenetically evolving lineage with a gradual and directional pattern of increasing molar hypsodonty. Dental changes related to increasing hypsodonty are comparable to those of the octodontid lineage Chasichimys also recovered from the Cerro Azul Formation. However, Neophanomys shows comparatively less variation in gross morphology and there are no evidences that this lineage achieved euhypsodonty. In contrast, important changes in enamel microstructure (schmelzmuster) are observed among different populations of Neophanomys, supporting the hypothesis that these changes can occur at least partially independently from modifications in dental gross morphology. The patterns of dental evolution detected in the Neophanomys and Chasichimys-Xenodontomys lineages and the unequivocal polarity of the changes involved, related to increasing hypsodonty, reinforce the hypothesis that chronological differences exist among late Miocene outcroppings of Cerro Azul Formation in central Argentina.  相似文献   

14.
Despite the biological and economic importance of the Cetartiodactyla, the phylogeny of this clade remains controversial. Using the supertree approach of matrix representation with parsimony, we present the first phylogeny to include all 290 extant species of the Cetacea (whales and dolphins) and Artiodactyla (even-toed hoofed mammals). At the family-level, the supertree is fully resolved. For example, the relationships among the Ruminantia appear as (((Cervidae, Moschidae) Bovidae) (Giraffidae, Antilocapridae) Tragulidae). However, due to either lack of phylogenetic study or contradictory information, polytomies occur within the clades Sus, Muntiacus, Cervus, Delphinidae, Ziphiidae and Bovidae. Complete species-level phylogenies are necessary for both illustrating and analysing biological, geographical and ecological patterns in an evolutionary framework. The present species-level tree of the Cetartiodactyla provides the first opportunity to examine comparative hypotheses across entirely aquatic and terrestrial species within a single mammalian order.  相似文献   

15.
Calcaronean sponges are acknowledged to be taxonomically difficult, and generally, molecular data does not support the current morphology-based classification. In addition, molecular markers that have been successfully employed in other sponge taxa (e.g., COI mtDNA) have proven challenging to amplify due to the characteristics of calcarean mitochondrial genomes. A short fragment of the 28S rRNA gene (C-region) was recently proposed as the most phylogenetically informative marker to be used as a DNA barcode for calcareous sponges. In this study, the C-region and a fragment of the 18S rRNA gene were sequenced for a wide range of calcareous taxa, mainly from the subclass Calcaronea. The resulting dataset includes the most comprehensive taxon sampling of Calcaronea to date, and the inclusion of multiple specimens per species allowed us to evaluate the performance of both markers, as barcoding markers. 18S proved to be highly conserved within Calcaronea and does not have sufficient signal to resolve phylogenetic relationships within the subclass. Although the C-region does not exhibit a “proper” barcoding gap, it provides good phylogenetic resolution for calcaronean sponges. The resulting phylogeny supports previous findings that the current classification of the subclass Calcaronea is highly artificial, and with high levels of homoplasy. Furthermore, the close relationship between the order Baerida and the genus Achramorpha suggest that the order Baerida should be abandoned. Although the C-region currently represents the best available marker for phylogenetic and barcoding studies in Calcaronea, it is necessary to develop additional molecular markers to improve the classification within this subclass.  相似文献   

16.
Tayassu pecari is widely distributed across the Neotropical region, from northern Argentina to south-eastern Mexico. However, its fossil record is scarce; it is recorded since the middle Pleistocene to Holocene in Argentina, Brazil and Uruguay. This paper aims to: (1) update the systematic synonymy of this species; (2) review and update its geographic chronologic distribution and provide a new Lujanian record of Tayassu pecari in Buenos Aires Province and (3) discuss the paleoenvironmental and paleobiogeographical implications of this record. Considering the quantitative analysis performed, the fossil here recorded clearly integrates the group of Tayassu pecari. This specimen corresponds to the first record of Tayassu pecari in the central-northern region of the Buenos Aires Province. During Late Pleistocene, Tayassu pecari was distributed southern to its recent range, probably evidencing different paleoenvironment conditions. This species is the better adapted peccary to tropical and subtropical rainforests, but may also be present in arid environments. Consequently, Tayassu by itself is insufficient to infer the prevailing environmental conditions. However, according to the fauna associated with the specimen described here, it is possible to infer an open or semi-open and arid or semi-arid environment for the central-northern Buenos Aires region by Late Pleistocene times.  相似文献   

17.
Ophiuroidea is the most speciose of all classes of Echinoderma. It is an important component in benthic ecosystems, occurring in almost all ecological niches of modern seas. To date, the phylogeny and complete evolutionary history of the ophiuroids have not yet been fully resolved. In this study, we sequenced the complete mitochondrial genomes (mitogenomes) of Ophiothrix (Ophiothrix) exigua and two deep-sea species Histampica sp. CS049 and Ophioplinthaca sp. M5261. These two deep-sea ophiuroids displayed reversed strand-compositional bias and rearranged gene orders. Thirteen distinct patterns of mitochondrial gene order among ophiuroid mitogenomes were detected, with two gene order newly found in Ophiuroidea. Our data supported the gene order found in all sampled Ophiuridae as the most likely ancestral order of all Ophiuroidea. To improve phylogenetic accuracy based on nucleotide differences, two different criteria were used for the analyses: (i) nucleotide sequence from all codon positions (PCG123); (ii) the NTE method (“Neutral Transitions Excluded”) for ameliorating the misleading effects of a reverse strand bias in the data. The two methods confirmed the polyphyly of the orders Ophiacanthida and Amphilepidia. At family and genus level, Ophiuridae, Ophionotus and Ophioplinthus were not monophyletic. The most notable exception was that the NTE phylogeny showed low variation of branch length. NTE dataset generated younger age for most lower-level nodes than that from PCG123 dataset. All analyses suggested that the ophiuroids radiation occurred around the Permian–Triassic mass extinction event, and the divergence time of the deep-sea lineages was during the Cretaceous.  相似文献   

18.
We describe a new species of the rare and enigmatic cricetid genus Karydomys from the middle Miocene Ville Formation of the Hambach lignite mine in north-west Germany. The locality Hambach 6C has yielded the first substantial records of Karydomys from central Europe. For the first time, all molar positions are well-documented, including the previously unknown m2. The excellent molar material allows us to distinguish Karydomys wigharti sp. nov. from the western European species K. zapfei. Karydomys wigharti predominantly occurs at localities that are correlated with the upper part of the Mammalian Neogene biozone MN 5. The new finds are of palaeobiogeographic significance for the genus Karydomys , since Hambach 6C represents the north-westernmost outpost of terrestrial Miocene faunas in Europe. In addition, the locality has yielded the first lower jaws and incisors of the genus. Both the jaw morphology, and the ornamentation and microstructure of the incisor enamel offer new arguments for a systematic classification of Karydomys into the subfamily Democricetodontinae. We assume that the scarcity of the two large European Karydomys species can be explained by their special adaptation to wet habitats, which are poorly documented in the fossil record.  相似文献   

19.
This paper outlines several aspects of the skeleto-muscular organization of the adult prothorax and cervix pertaining to the ground pattern of Diptera, which in turn leads to the characterization of Neodiptera, a higher level dipterous taxon which includes Brachycera and bibionomorph Nematocera ( sensu Hennig). The monophyly of Neodiptera is firmly supported by four skeleto-muscular modifications of the pronoto-cervical region. The bibionomorph Nematocera are shown to be paraphyletic in terms of Brachycera. On more preliminary evidence it is argued that the fundamental dichotomy of the extant Diptera lies between a 'polyneuran' clade which includes Trichoceridae, Tipuloidea, Tanyderidae, and Ptychopteridae and an 'oligoneuran' clade which includes all the remaining groups. Preliminary evidence for a sister group relationship between Blephariceroidea and Culicomorpha is also provided. The possible adaptational significance of the cervical specializations in Neodiptera is discussed.  相似文献   

20.
Populus euphratica is well adapted to extreme desert environments and is an important model species for elucidating the mechanisms of abiotic stress resistance in trees. The current assembly of P. euphratica genome is highly fragmented with many gaps and errors, thereby impeding downstream applications. Here, we report an improved chromosome‐level reference genome of P. euphratica (v2.0) using single‐molecule sequencing and chromosome conformation capture (Hi‐C) technologies. Relative to the previous reference genome, our assembly represents a nearly 60‐fold improvement in contiguity, with a scaffold N50 size of 28.59 Mb. Using this genome, we have found that extensive expansion of Gypsy elements in P. euphratica led to its rapid increase in genome size compared to any other Salicaceae species studied to date, and potentially contributed to adaptive divergence driven by insertions near genes involved in stress tolerance. We also detected a wide range of unique structural rearrangements in P. euphratica, including 2,549 translocations, 454 inversions, 121 tandem and 14 segmental duplications. Several key genes likely to be involved in tolerance to abiotic stress were identified within these regions. This high‐quality genome represents a valuable resource for poplar breeding and genetic improvement in the future, as well as comparative genomic analysis with other Salicaceae species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号