首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
2.
3.
  • Plants have evolved a sophisticated two‐branch defence system to prevent the growth and spread of pathogen infection. The novel Cys‐rich repeat (CRR) containing receptor‐like kinases, known as CRKs, were reported to mediate defence resistance in plants. For rice, there are only two reports of CRKs. A semi‐dominant lesion mimic mutant als1 (apoptosis leaf and sheath 1) in rice was identified to demonstrate spontaneous lesions on the leaf blade and sheath.
  • A map‐based cloning strategy was used for fine mapping and cloning of ALS1, which was confirmed to be a typical CRK in rice. Functional studies of ALS1 were conducted, including phylogenetic analysis, expression analysis, subcellular location and blast resistance identification.
  • Most pathogenesis‐related (PR) genes and other defence‐related genes were activated and up‐regulated to a high degree. ALS1 was expressed mainly in the leaf blade and sheath, in which further study revealed that ALS1 was present in the vascular bundles. ALS1 was located in the cell membrane of rice protoplasts, and its mutation did not change its subcellular location. Jasmonic acid (JA) and salicylic acid (SA) accumulation were observed in als1, and enhanced blast resistance was also observed.
  • The mutation of ALS1 caused a constitutively activated defence response in als1. The results of our study imply that ALS1 participates in a defence response resembling the common SA‐, JA‐ and NH1‐mediated defence responses in rice.
  相似文献   

4.
5.
The plant hormone auxin is believed to influence almost every aspect of plant growth and development. Auxin transport, biosynthesis and degradation combine to form gradients of the hormone that influence a range of key developmental and environmental response processes. There is abundant genetic evidence for the existence of multiple pathways for auxin biosynthesis and degradation. The complexity of these pathways makes it difficult to obtain a clear picture of the relative importance of specific metabolic pathways during development. We have developed a sensitive mass spectrometry‐based method to simultaneously profile the majority of known auxin precursors and conjugates/catabolites in small amounts of Arabidopsis tissue. The method includes a new derivatization technique for quantification of the most labile of the auxin precursors. We validated the method by profiling the auxin metabolome in root and shoot tissues from various Arabidopsis thaliana ecotypes and auxin over‐producing mutant lines. Substantial differences were shown in metabolite patterns between the lines and tissues. We also found differences of several orders of magnitude in the abundance of auxin metabolites, potentially indicating the relative importance of these compounds in the maintenance of auxin levels and activity. The method that we have established will enable researchers to obtain a better understanding of the dynamics of auxin metabolism and activity during plant growth and development.  相似文献   

6.
Starch is the most widespread form of energy storage in the plant kingdom. Although many enzymes and related factors have been identified for starch biosynthesis, unknown players remain to be identified, given that it is a complicated and sophisticated process. The endosperm of rice (Oryza sativa) has been used for the study of starch synthesis. Here, we report the cloning and characterization of the FLOURY ENDOSPERM6 (FLO6) gene in rice. In the flo6 mutant, the starch content is decreased and the normal physicochemical features of starch are changed. Significantly, flo6 mutant endosperm cells show obvious defects in compound granule formation. Map‐based cloning showed that FLO6 encodes a protein of unknown function. It harbors an N–terminal transit peptide that ensures its correct localization and functions in the plastid, and a C–terminal carbohydrate‐binding module 48 (CBM48) domain that binds to starch. Furthermore, FLO6 can interact with isoamylase1 (ISA1) both in vitro and in vivo, whereas ISA1 does not bind to starch directly. We thus propose that FLO6 may act as a starch‐binding protein involved in starch synthesis and compound granule formation through a direct interaction with ISA1 in developing rice seeds. Our data provide a novel insight into the role of proteins with the CBM48 domain in plant species.  相似文献   

7.
8.
9.
Poaceae plants release 2′‐deoxymugineic acid (DMA) and related phytosiderophores to chelate iron (Fe), which often exists as insoluble Fe(III) in the rhizosphere, especially under high pH conditions. Although the molecular mechanisms behind the biosynthesis and secretion of DMA have been studied extensively, little information is known about whether DMA has biological roles other than chelating Fe in vivo. Here, we demonstrate that hydroponic cultures of rice (Oryza sativa) seedlings show almost complete restoration in shoot height and soil‐plant analysis development (SPAD) values after treatment with 3–30 μm DMA at high pH (pH 8.0), compared with untreated control seedlings at normal pH (pH 5.8). These changes were accompanied by selective accumulation of Fe over other metals. While this enhanced growth was evident under high pH conditions, DMA application also enhanced seedling growth under normal pH conditions in which Fe was fairly accessible. Microarray and qRT‐PCR analyses revealed that exogenous DMA application attenuated the increased expression levels of various genes related to Fe transport and accumulation. Surprisingly, despite the preferential utilization of ammonium over nitrate as a nitrogen source by rice, DMA application also increased nitrate reductase activity and the expression of genes encoding high‐affinity nitrate transporters and nitrate reductases, all of which were otherwise considerably lower under high pH conditions. These data suggest that exogenous DMA not only plays an important role in facilitating the uptake of environmental Fe, but also orchestrates Fe and nitrate assimilation for optimal growth under high pH conditions.  相似文献   

10.
11.
Lesion mimic mutants that exhibit spontaneous hypersensitive response (HR)‐like necrotic lesions are ideal experimental systems for elucidating molecular mechanisms involved in plant cell death and defence responses. Here we report identification of a rice lesion mimic mutant, spotted leaf 35 (spl35), and cloning of the causal gene by TAIL‐PCR strategy. spl35 exhibited decreased chlorophyll content, higher accumulation of H2O2, up‐regulated expression of defence‐related marker genes, and enhanced resistance to both fungal and bacterial pathogens of rice. The SPL35 gene encodes a novel CUE (coupling of ubiquitin conjugation to ER degradation) domain‐containing protein that is predominantly localized in cytosol, ER and unknown punctate compartment(s). SPL35 is constitutively expressed in all organs, and both overexpression and knockdown of SPL35 cause the lesion mimic phenotype. SPL35 directly interacts with the E2 protein OsUBC5a and the coatomer subunit delta proteins Delta‐COP1 and Delta‐COP2 through the CUE domain, and down‐regulation of these interacting proteins also cause development of HR‐like lesions resembling those in spl35 and activation of defence responses, indicating that SPL35 may be involved in the ubiquitination and vesicular trafficking pathways. Our findings provide insight into a role of SPL35 in regulating cell death and defence response in plants.  相似文献   

12.
13.
Lower plant species including some green algae, non‐vascular plants (bryophytes) as well as the oldest vascular plants (lycopods) and ferns (monilophytes) possess a unique aldehyde dehydrogenase (ALDH) gene named ALDH21, which is upregulated during dehydration. However, the gene is absent in flowering plants. Here, we show that ALDH21 from the moss Physcomitrella patens codes for a tetrameric NADP+‐dependent succinic semialdehyde dehydrogenase (SSALDH), which converts succinic semialdehyde, an intermediate of the γ‐aminobutyric acid (GABA) shunt pathway, into succinate in the cytosol. NAD+ is a very poor coenzyme for ALDH21 unlike for mitochondrial SSALDHs (ALDH5), which are the closest related ALDH members. Structural comparison between the apoform and the coenzyme complex reveal that NADP+ binding induces a conformational change of the loop carrying Arg‐228, which seals the NADP+ in the coenzyme cavity via its 2′‐phosphate and α‐phosphate groups. The crystal structure with the bound product succinate shows that its carboxylate group establishes salt bridges with both Arg‐121 and Arg‐457, and a hydrogen bond with Tyr‐296. While both arginine residues are pre‐formed for substrate/product binding, Tyr‐296 moves by more than 1 Å. Both R121A and R457A variants are almost inactive, demonstrating a key role of each arginine in catalysis. Our study implies that bryophytes but presumably also some green algae, lycopods and ferns, which carry both ALDH21 and ALDH5 genes, can oxidize SSAL to succinate in both cytosol and mitochondria, indicating a more diverse GABA shunt pathway compared with higher plants carrying only the mitochondrial ALDH5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号