首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chelatable zinc is important in brain function, and its homeostasis is maintained to prevent cytotoxic overload. However, certain pathologic events result in intracellular zinc accumulation in lysosomes and mitochondria. Abnormal lysosomes and mitochondria are common features of the human lysosomal storage disorder known as mucolipidosis IV (MLIV). MLIV is caused by the loss of TRPML1 ion channel function. MLIV cells develop large hyperacidic lysosomes, membranous vacuoles, mitochondrial fragmentation, and autophagic dysfunction. Here, we observed that RNA interference of mucolipin-1 gene (TRPML1) in HEK-293 cells mimics the MLIV cell phenotype consisting of large lysosomes and membranous vacuoles that accumulate chelatable zinc. To show that abnormal chelatable zinc levels are indeed correlated with MLIV pathology, we quantified its concentration in cultured MLIV patient fibroblast and control cells with a spectrofluorometer using N-(6-methoxy-8-quinolyl)-p-toluene sulfonamide fluorochrome. We found a significant increase of chelatable zinc levels in MLIV cells but not in control cells. Furthermore, we quantified various metal isotopes in whole brain tissue of TRPML1−/− null mice and wild-type littermates using inductively coupled plasma mass spectrometry and observed that the zinc-66 isotope is markedly elevated in the brain of TRPML1−/− mice when compared with controls. In conclusion, we show for the first time that the loss of TRPML1 function results in intracellular chelatable zinc dyshomeostasis. We propose that chelatable zinc accumulation in large lysosomes and membranous vacuoles may contribute to the pathogenesis of the disease and progressive cell degeneration in MLIV patients.  相似文献   

2.
MCOLN1 encodes mucolipin‐1 (TRPML1), a member of the transient receptor potential TRPML subfamily of channel proteins. Mutations in MCOLN1 cause mucolipidosis‐type IV (MLIV), a lysosomal storage disorder characterized by severe neurologic, ophthalmologic, and gastrointestinal abnormalities. Along with TRPML1, there are two other TRPML family members, mucolipin‐2 (TRPML2) and mucolipin‐3 (TRPML3). In this study, we used immunocytochemical analysis to determine that TRPML1, TRPML2, and TRPML3 co‐localize in cells. The multimerization of TRPML proteins was confirmed by co‐immunoprecipitation and Western blot analysis, which demonstrated that TRPML1 homo‐multimerizes as well as hetero‐multimerizes with TRPML2 and TRPML3. MLIV‐causing mutants of TRPML1 also interacted with wild‐type TRPML1. Lipid bilayer re‐constitution of in vitro translated TRPML2 and TRPML3 confirmed their cation channel properties with lower single channel conductance and higher partial permeability to anions as compared to TRPML1. We further analyzed the electrophysiological properties of single channel TRPML hetero‐multimers, which displayed functional differences when compared to individual TRPMLs. Our data shows for the first time that TRPMLs form distinct functional channel complexes. Homo‐ and hetero‐multimerization of TRPMLs may modulate channel function and biophysical properties, thereby increasing TRPML functional diversity. J. Cell. Physiol. 222: 328–335, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Mucolipidosis type IV (MLIV) is a lysosomal storage disorder caused by mutations in the MCOLN1 gene, a member of the transient receptor potential (TRP) cation channel gene family. The encoded protein, transient receptor potential mucolipin‐1 (TRPML1), has been localized to lysosomes and late endosomes but the pathogenic mechanism by which loss of TRPML1 leads to abnormal cellular storage and neuronal cell death is still poorly understood. Yeast two‐hybrid and co‐immunoprecipitation (coIP) experiments identified interactions between TRPML1 and Hsc70 as well as TRPML1 and Hsp40. Hsc70 and Hsp40 are members of a molecular chaperone complex required for protein transport into the lysosome during chaperone‐mediated autophagy (CMA). To determine the functional relevance of this interaction, we compared fibroblasts from MLIV patients to those from sex‐ and age‐matched controls and show a defect in CMA in response to serum withdrawal. This defect in CMA was subsequently confirmed in purified lysosomes isolated from control and MLIV fibroblasts. We further show that the amount of lysosomal‐associated membrane protein type 2A (LAMP‐2A) is reduced in lysosomal membranes of MLIV fibroblasts. As a result of decreased CMA, MLIV fibroblasts have increased levels of oxidized proteins compared to control fibroblasts. We hypothesize that TRPML1 may act as a docking site for intralysosomal Hsc70 (ly‐Hsc70) allowing it to more efficiently pull in substrates for CMA. It is also possible that TRPML1 channel activity may be required for CMA. Understanding the role of TRPML1 in CMA will undoubtedly help to characterize the pathogenesis of MLIV. J. Cell. Physiol. 219: 344–353, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
《Cell calcium》2015,57(6):446-456
Mucolipin synthetic agonist 1 (ML-SA1) was recently identified to activate mammalian TRPML channels and shown to alleviate lipid accumulation in lysosomes of cellular models of lysosome storage diseases, mucolipidosis type IV (MLIV) and Niemann–Pick's disease type C (NPC). Owning to its potential use in complimenting genetic studies in Drosophila melanogaster to elucidate the cellular and physiological functions of TRPML channels, we examined the effect of ML-SA1 on Drosophila TRPML expressed in HEK293 cells using whole-cell, inside-out, and whole-lysosome electrophysiological recordings. We previously showed that when expressed in HEK293 cells, Drosophila TRPML was localized and functional on both plasma membrane and endolysosome. We show here that in both inside-out patches excised from the plasma membrane and whole-lysosome recordings from enlarged endolysosome vacuoles, ML-SA1 failed to activate TRPML unless exogenous phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] was applied. At 1 μM ML-SA1, the sensitivity of TRPML to PI(3,5)P2 increased approximately by 10-fold and at 10 μM ML-SA1, the deactivation of PI(3,5)P2-evoked TRPML currents was markedly slowed. On the other hand, constitutive activation of TRPML by a mutation that mimics the varitint-waddler (Va) mutation of mouse TRPML3 rendered the insect channel sensitive to activation by ML-SA1 alone. Moreover, different from the insect TRPML, mouse TRPML1 was readily activated by ML-SA1 independent of PI(3,5)P2. Thus, our data reveal that while ML-SA1 acts as a true agonist at mouse TRPML1, it behaves as an allosteric activator of the Drosophila TRPML, showing dependence on and the ability to stabilize open conformation of the insect channels.  相似文献   

5.
Mutations in TRPML1 cause the lysosomal storage disease mucolipidosis type IV (MLIV). The role of TRPML1 in cell function and how the mutations cause the disease are not well understood. Most studies focus on the role of TRPML1 in constitutive membrane trafficking to and from the lysosomes. However, this cannot explain impaired neuromuscular and secretory cells’ functions that mediate regulated exocytosis. Here, we analyzed several forms of regulated exocytosis in a mouse model of MLIV and, opposite to expectations, we found enhanced exocytosis in secretory glands due to enlargement of secretory granules in part due to fusion with lysosomes. Preliminary exploration of synaptic vesicle size, spontaneous mEPSCs, and glutamate secretion in neurons provided further evidence for enhanced exocytosis that was rescued by re‐expression of TRPML1 in neurons. These features were not observed in Niemann–Pick type C1. These findings suggest that TRPML1 may guard against pathological fusion of lysosomes with secretory organelles and suggest a new approach toward developing treatment for MLIV.  相似文献   

6.
Transient Receptor Potential mucolipin (TRPML) channels are implicated in endolysosomal trafficking, lysosomal Ca2+ and Fe2+ release, lysosomal biogenesis, and autophagy. Mutations in human TRPML1 cause the lysosome storage disease, mucolipidosis type IV (MLIV). Unlike vertebrates, which express three TRPML genes, TRPML1–3, the Drosophila genome encodes a single trpml gene. Although the trpml-deficient flies exhibit cellular defects similar to those in mammalian TRPML1 mutants, the biophysical properties of Drosophila TRPML channel remained uncharacterized. Here, we show that transgenic expression of human TRPML1 in the neurons of Drosophila trpml mutants partially suppressed the pupal lethality phenotype. When expressed in HEK293 cells, Drosophila TRPML was localized in both endolysosomes and plasma membrane and was activated by phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) applied to the cytoplasmic side in whole lysosomes and inside-out patches excised from plasma membrane. The PI(3,5)P2-evoked currents were blocked by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), but not other phosphoinositides. Using TRPML A487P, which mimics the varitint-waddler (Va) mutant of mouse TRPML3 with constitutive whole-cell currents, we show that TRPML is biphasically regulated by extracytosolic pH, with an optimal pH about 0.6 pH unit higher than that of human TRPML1. In addition to monovalent cations, TRPML exhibits high permeability to Ca2+, Mn2+, and Fe2+, but not Fe3+. The TRPML currents were inhibited by trivalent cations Fe3+, La3+, and Gd3+. These features resemble more closely to mammalian TRPML1 than TRPML2 and TRPML3, but with some obvious differences. Together, our data support the use of Drosophila for assessing functional significance of TRPML1 in cell physiology.  相似文献   

7.
Loss-of-function mutations in TRPML1 (transient receptor potential mucolipin 1) cause the lysosomal storage disorder, mucolipidosis type IV (MLIV). Here, we report that flies lacking the TRPML1 homolog displayed incomplete autophagy and reduced viability during the pupal period-a phase when animals rely on autophagy for nutrients. We show that TRPML was required for fusion of amphisomes with lysosomes, and its absence led to accumulation of vesicles of significantly larger volume and higher luminal Ca(2+). We also found that trpml(1) mutant cells showed decreased TORC1 (target of rapamycin complex 1) signaling and a concomitant upregulation of autophagy induction. Both of these defects in the mutants were reversed by genetically activating TORC1 or by feeding the larvae a high-protein diet. The high-protein diet?also reduced the pupal lethality and the increased volume of acidic vesicles. Conversely, further inhibition of TORC1 activity by rapamycin exacerbated the mutant phenotypes. Finally, TORC1 exerted reciprocal control on TRPML function. A high-protein diet caused cortical localization of TRPML, and this effect was blocked by rapamycin. Our findings delineate the interrelationship between the TRPML and TORC1 pathways and raise the intriguing possibility that a high-protein diet might reduce the severity of MLIV.  相似文献   

8.
9.

Objective

To study the effects of CTNNB1 gene knockout by CRISPR-Cas9 technology on cell adhesion, proliferation, apoptosis, and Wnt/β-catenin signaling pathway.

Results

CTNNB1 gene of HEK 293T cells was knocked out by CRISPR-Cas9. This was confirmed by sequencing and western blotting. Methylthiazolyl-tetrazolium bromide assays indicated that deletion of β-catenin significantly weakened adhesion ability and inhibited proliferation rate (P < 0.01) of HEK 293T cells. Nevertheless, deletion of β-catenin did not affect apoptosis of HEK 293T cells, which was analyzed by flow cytometry with Annexin V-fluorescein isothiocyanate/propidium iodide double staining. In addition, expression level of GSK-, CCND1, and CCNE1 detected by qPCR and expression level of N-Cadherin and cyclin D1 detected by western blotting were significantly decreased (P < 0.01) while expression of γ-catenin detected by western blotting was significantly increased (P < 0.001).

Conclusions

Knockout of CTNNB1 disturbed Wnt/β-catenin signaling pathway and significantly inhibited adhesion and proliferation of HEK 293T cells.
  相似文献   

10.
We tested whether surface α7 nicotinic acetylcholine receptor expression is dependent on an endogenous chaperone named Resistance to Inhibitors of Cholinesterase 3 (RIC3) by comparing RIC3 protein in rat GH4C1 and human SH‐EP1 cells, which express strikingly different surface receptor levels following α7 transfection. Cloned rat RIC3 exists in at least two isoforms because of an ambiguous splice site between exons 4 and 5. Both rat isoforms permit surface α7 expression in SH‐EP1 and human embryonic kidney (HEK) cells measured by α‐bungarotoxin binding. Contrary to expectations, endogenous RIC3 protein expression determined by immunoblots did not differ between untransfected GH4C1 or SH‐EP1 cells. siRNA against rat RIC3 exon 4 and shRNA against exons 2, 5 and 6 knocked down transfected rat RIC3 expression in SH‐EP1 cells and simultaneously blocked toxin binding. However, no RNAi construct blocked binding when co‐transfected with α7 into GH4C1 cells. shRNA against rat exons 2 and 5 knocked down rat RIC3 protein transfected into GH4C1 cells with a time course suggesting a protein half‐life of a few days. These results suggest GH4C1 cells may possess unknown chaperone(s) allowing high surface α7 expression in the absence of known RIC3 splice variants.  相似文献   

11.
Mucolipidosis type IV (MLIV) is a lysosomal storage disease caused by mutations in the gene MCOLN1, which codes for the transient receptor potential family ion channel TRPML1. MLIV has an early onset and is characterized by developmental delays, motor and cognitive deficiencies, gastric abnormalities, retinal degeneration, and corneal cloudiness. The degenerative aspects of MLIV have been attributed to cell death, whose mechanisms remain to be delineated in MLIV and in most other storage diseases. Here we report that an acute siRNA-mediated loss of TRPML1 specifically causes a leak of lysosomal protease cathepsin B (CatB) into the cytoplasm. CatB leak is associated with apoptosis, which can be prevented by CatB inhibition. Inhibition of the proapoptotic protein Bax prevents TRPML1 KD-mediated apoptosis but does not prevent cytosolic release of CatB. This is the first evidence of a mechanistic link between acute TRPML1 loss and cell death.  相似文献   

12.
Osmoreception is essential for systemic osmoregulation, a process to stabilize the tonicity and volume of the extracellular fluid through regulating the ingestive behaviour, sympathetic outflow and renal function. The sensation of osmotic changes by osmoreceptor neurons is mediated by ion channels that detect the change of osmolarity in extracellular fluid. However, the molecular identity of these channels remains mysterious. AtCSC1and OSCA1,two closely related paralogues from Arabidopsis, have been demonstrated to form hyperosmolarity activated ion channels, which makes their mammalian orthologues—the members of TMEM63 proteins, possible candidates for osmoreceptor transduction channel. To test this possibility, we cloned the cDNAs of all the three members of the mouse TMEM63 family, TMEM63A, TMEM63B and TMEM63C from the mRNA from mouse brain. When all of the three subtypes of TMEM63 proteins were co‐expressed in HEK293 cells, we recorded membrane currents evoked by hypertonic stimulation in these cells. However, the cells expressing the combinations of any two subtypes of TMEM63 proteins could not exhibit any hyperosmolarity evoked currents. Thus, all the three members of TMEM63 proteins are required to constitute a hyperosmolarity activated ion channel. We propose that the TMEM63 proteins may serve as an osmolarity sensitive ion channel for the osmoreception. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Schroeder BC  Cheng T  Jan YN  Jan LY 《Cell》2008,134(6):1019-1029
Calcium-activated chloride channels (CaCCs) are major regulators of sensory transduction, epithelial secretion, and smooth muscle contraction. Other crucial roles of CaCCs include action potential generation in Characean algae and prevention of polyspermia in frog egg membrane. None of the known molecular candidates share properties characteristic of most CaCCs in native cells. Using Axolotl oocytes as an expression system, we have identified TMEM16A as the Xenopus oocyte CaCC. The TMEM16 family of "transmembrane proteins with unknown function" is conserved among eukaryotes, with family members linked to tracheomalacia (mouse TMEM16A), gnathodiaphyseal dysplasia (human TMEM16E), aberrant X segregation (a Drosophila TMEM16 family member), and increased sodium tolerance (yeast TMEM16). Moreover, mouse TMEM16A and TMEM16B yield CaCCs in Axolotl oocytes and mammalian HEK293 cells and recapitulate the broad CaCC expression. The identification of this new family of ion channels may help the development of CaCC modulators for treating diseases including hypertension and cystic fibrosis.  相似文献   

14.
Q. Chu  L. Liu  W. Wang 《Cell proliferation》2013,46(3):254-262

Objectives

Human CAP10‐like protein 46 kDa (hCLP46), also known as Poglut1, has been shown to be an essential regulator of Notch signalling. hCLP46 is overexpressed in primary acute myelogenous leukaemia, T‐acute lymphoblastic leukaemia samples and other leukaemia cell lines. However, effects of hCLP46 overexpression, up to now, have remained unknown.

Materials and methods

In this study, we established stable 293TRex cell lines inducibly overexpressing hCLP46, and knocked down hCLP6 with a specific small interfering RNA to explore function of the protein in Notch signalling and cell proliferation.

Results

hCLP46 overexpression enhanced Notch1 activation in 293Trex cells in a ligand‐dependent manner, with increased Notch signalling enhancing Hes1 expression. We further verified that overexpression of hCLP46 inhibited proliferation of 293TRexs and was correlated with increases in cyclin dependent kinase inhibitors p21 and p27, whereas reduced hCLP46 expression moderately increased cell proliferation. In addition, p21 and p27 protein levels were higher when Notch signalling was activated by EDTA treatment.

Conclusions

Taken together, hCLP46 enhanced Notch activation and inhibited 293TRex cell proliferation through CDKI signalling.
  相似文献   

15.
The P2Y11 nucleotide receptor detects high extracellular ATP concentrations. Mutations of the human P2RY11 gene can play a role in brain autoimmune responses, and the P2Y11 receptor alanine‐87‐threonine (A87T) polymorphism has been suggested to affect immune‐system functions. We investigated receptor functionality of the P2Y11A87T mutant using HEK293 and 1321N1 astrocytoma cells. In HEK293 cells, the P2Y11 receptor agonist 3′‐O‐(4‐benzoylbenzoyl)adenosine 5′‐triphosphate (BzATP) was completely inactive in evoking intracellular calcium release while the potency of ATP was reduced. ATP was also less potent in triggering cAMP generation. However, 1321N1 astrocytoma cells, which lack any endogenous P2Y1 receptors, did not display a reduction. Only when 1321N1 cells were co‐transfected with P2Y11A87T and P2Y1 receptors, the calcium responses to the P2Y11 receptor‐specific agonist BzATP were reduced. It is already known that P2Y1 and P2Y11 receptors interact. We thus conclude that the physiological impact of A87T mutation of the P2Y11 receptor derives from detrimental effects on P2Y1–P2Y11 receptor interaction. We additionally investigated alanine‐87‐serine and alanine‐87‐tyrosine P2Y11 receptor mutants. Both mutations rescue the response to BzATP in HEK293 cells, thus ruling out polarity of amino acid‐87 to be the molecular basis for altered receptor characteristics. We further found that the P2Y11A87T receptor shows complete loss of nucleotide‐induced internalization in HEK293 cells. Thus, we demonstrate impaired signaling of the P2Y11 A87T‐mutated receptors when co‐operating with P2Y1 receptors.

  相似文献   


16.
MLIV (mucolipidosis type?IV) is a neurodegenerative lysosomal storage disorder caused by mutations in MCOLN1, a gene that encodes TRPML1 (mucolipin-1), a member of the TRPML (transient receptor potential mucolipin) cation channels. Two additional homologues are TRPML2 and TRPML3 comprising the TRPML subgroup in the TRP superfamily. The three proteins play apparently key roles along the endocytosis process, and thus their cellular localization varies among the different group members. Thus TRPML1 is localized exclusively to late endosomes and lysosomes, TRPML2 is primarily located in the recycling clathrin-independent GPI (glycosylphosphatidylinositol)-anchored proteins and early endosomes, and TRPML3 is primarily located in early endosomes. Apparently, all three proteins' main physiological function underlies Ca(2+) channelling, regulating the endocytosis process. Recent findings also indicate that the three TRPML proteins form heteromeric complexes at least in some of their cellular content. The physiological role of these complexes in lysosomal function remains to be elucidated, as well as their effect on the pathophysiology of MLIV. Another open question is whether any one of the TRPMLs bears additional function in channel activity.  相似文献   

17.
Feast or famine     
《Autophagy》2013,9(1):98-100
Lysosomal storage diseases are metabolic disorders characterized by the accumulation of acidic vacuoles, and are usually the consequence of the deficiency of an enzyme responsible for the metabolism of vesicular lipids, proteins or carbohydrates. In contrast, mucolipidosis type IV (MLIV), results from the absence of a vesicular Ca2+ release channel called mucolipin 1/transient receptor potential mucolipin 1 (MCOLN1/TRPML1) which is required for the fusion of amphisomes with lysosomes. In Drosophila, ablation of the MCOLN1 homolog (trpml) leads to diminished viability during pupation when the animals rely on autophagy for nutrients. This pupal lethality results from decreased target of rapamycin complex 1 (TORC1) signaling, and is reversed by reactivating TORC1. Our findings indicate that one of the primary causes of toxicity in the absence of TRPML is cellular amino acid starvation, and the resulting decrease in TORC1 activity. Furthermore, our findings raise the intriguing possibility that the neurological dysfunction in MLIV patients may arise from amino acid deprivation in neurons. Therefore, future studies evaluating the levels of amino acids and TORC1 activity in MLIV neurons may aid in the development of novel therapeutic strategies to combat the severe manifestations of MLIV.  相似文献   

18.
Naofen has recently been identified from the rat brain/spinal cord cDNA library as a substance reactive against an anti-shigatoxin (Stx)-2 antibody. Naofen mRNA is composed of 4620 nucleotides and encodes 1170 amino acids. Naofen contains four WD-repeat domains in its N-terminus and is ubiquitously distributed in many tissues of the rat. Tumor necrosis factor (TNF)-α enhanced the expression of naofen mRNA in HEK293 cells in a dose-dependent manner. Furthermore, naofen siRNA, which predominantly knocked down the expression of naofen mRNA, significantly reduced both TNF-α-induced caspase-3 activation and apoptosis in HEK293 cells. Overexpression of naofen in HEK293 cells (FLAG-NF) spontaneously induced caspase -3 activation and apoptosis, and showed extremely high susceptibility to TNF-α-induced apoptosis. These results indicated that naofen may function as a novel modulator activating caspase-3, and promoting TNF-α-stimulated apoptosis.  相似文献   

19.
The ZnTs are a growing family of proteins involved in lowering or sequestration of cellular zinc. Using fluorescent measurements of zinc transport we have addressed the mechanism of action of the most ubiquitously expressed member of this family, ZnT-1. This protein has been shown to lower levels of intracellular zinc though the mechanism has remained elusive. The rate of zinc efflux in HEK293 cells expressing ZnT-1 was not accelerated in comparison to control cells, suggesting that ZnT-1 may be involved in regulating influx rather than efflux of zinc. Co-expression of the L-type calcium channel, a major route for zinc influx, and ZnT-1 resulted in a 3-fold reduction in the rate of zinc influx in HEK293 and PC-12 cells, indicating that ZnT-1 modulates zinc permeation through this channel. Immunoblot analysis indicates that ZnT-1 expression does not modulate LTCC expression. Our findings therefore indicate that ZnT-1 modulates the permeation of cations through LTCC, thereby, regulating cation homeostasis through this pathway. Furthermore, ZnT-1 may play a role in cellular ion homeostasis and thereby confer protection against pathophysiological events linked to cellular Ca(2+) or Zn(2+) permeation and cell death.  相似文献   

20.
Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone produced by bone and exerts its function in the target organs by binding the FGF receptor (FGFR) and Klotho. Since recent studies suggested that extracellular inorganic phosphate (Pi) itself triggers signal transduction and regulates gene expression in some cell types, we tested the notion that extracellular Pi induces signal transduction in the target cells of FGF23 also and influences its signaling, utilizing a human embryonic kidney cell line HEK293. HEK293 cells expressed low levels of klotho, and treatment with a recombinant FGF23[R179Q], a proteolysis‐resistant mutant of FGF23, resulted in phosphorylation of ERK1/2 and induction of early growth response‐1 (EGR1) expression. Interestingly, increased extracellular Pi resulted in activation of the Raf/MEK/ERK pathway and expression of EGR1, which involved type III sodium/phosphate (Na+/Pi) cotransporter PiT‐1. Since the effects of an inhibitor of Na+/Pi cotransporter on FGF23 signaling suggested that the signaling triggered by increased extracellular Pi shares the same downstream cascade as FGF23 signaling, we further investigated their convergence point. Increasing the extracellular Pi concentration resulted in the phosphorylation of FGF receptor substrate 2α (FRS2α), as did treatment with FGF23. Knockdown of FGFR1 expression diminished the phosphorylation of both FRS2α and ERK1/2 induced by the Pi. Moreover, overexpression of FGFR1 rescued the decrease in Pi‐induced phosphorylation of ERK1/2 in the cells where the expression of PiT‐1 was knocked down. These results suggest that increased extracellular Pi triggers signal transduction via PiT‐1 and FGFR and influences FGF23 signaling in HEK293 cells. J. Cell. Biochem. 111: 1210–1221, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号