首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nucleotide sequences from the mitochondrial cytochrome c oxidase subunit I (COI) gene, comprising the standard barcode segment, were used to examine genetic differentiation, systematics, and population structure of cactus flies (Diptera: Neriidae: Odontoloxozus) from Mexico and south‐western USA. Phylogenetic analyses revealed that samples of Odontoloxozus partitioned into two distinct clusters: one comprising the widely distributed Odontoloxozus longicornis (Coquillett) and the other comprising Odontoloxozus pachycericola Mangan & Baldwin, a recently described species from the Cape Region of the Baja California peninsula, which we show is distributed northward to southern California, USA. A mean Kimura two‐parameter genetic distance of 2.8% between O. longicornis and O. pachycericola, and eight diagnostic nucleotide substitutions in the COI gene segment, are consistent with a species‐level separation, thus providing the first independent molecular support for recognizing O. pachycericola as a distinct species. We also show that the only external morphological character considered to separate adults of the two species (number of anepisternal bristles) varies with body size and is therefore uninformative for making species assignments. Analysis of molecular variance indicated significant structure among populations of O. longicornis from three main geographical areas, (1) Arizona, USA and Sonora, Mexico; (2) Santa Catalina Island, California, USA; and (3) central Mexico (Querétaro and Guanajuato), although widely‐separated populations from Arizona and Sonora showed no evidence of structure. A TCS haplotype network showed no shared haplotypes of O. longicornis among the three main regions. The potential roles of vicariance and isolation‐by‐distance in restricting gene flow and promoting genetic differentiation and speciation in Odontoloxozus are discussed. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 245–256.  相似文献   

3.
As a result of their rather uniform external appearance and gross cranial morphology, the systematics of blind mole rats has been hotly debated over the last century; however, the separation of the large‐bodied and small‐bodied blind mole rats at the genus level (Spalax and Nannospalax, respectively), suggested earlier on morphological grounds, is strongly supported by recent molecular biological evidence. The species of Spalax have so far been distinguished from each other by cranial traits only, especially the outline of sutures of the cranium, and the shape and relative size of the nasal and parietal bones. Based on mitochondrial DNA sequences (with the widest taxonomic and geographic coverage so far) and detailed anatomical comparisons of museum specimens, we herewith provide a revision of the taxonomic and phylogenetic status of the westernmost representative of the genus, Spalax graecus s.l. We clarify that antiquus and istricus – presently regarded as synonyms of graecus – are well‐defined species, and they together form a separate clade within Spalax. The robustness of our conclusions is supported by the combined evidence of morphology, multilocus phylogeny, species distribution, and taxon history (species congruence with past tectonic and climate events). © 2013 The Linnean Society of London  相似文献   

4.
The systematics of the viviparid freshwater snail genus Margarya endemic to the ancient lakes of Yunnan, China, is revised based on comparative analyses of morphological features, including shell, operculum, radula, and genital anatomy, and molecular phylogenetic analyses of partial sequences of the mitochondrial 16S rDNA (16S) and cytochrome c oxidase subunit I (COI) genes, as well as the nuclear Internal Transcribed Spacer 2 (ITS2). The taxonomic utility of key anatomical and morphological features in this group is evaluated. The genus Margarya as delimited previously is split into three genera in order to retain monophyletic taxa: (1) Margarya s.s., consisting of four species, i.e. the type species Margarya melanioides plus Margarya francheti, Margarya oxytropoides, and Margarya monodi; (2) the previously introduced subgenus Tchangmargarya is elevated to an independent genus containing two species, Tchangmargarya yangtsunghaiensis and the new species T changmargarya multilabiata sp. nov. ; and (3) a new genus, A nularya gen. nov. , is described, also containing two species, i.e. Anularya mansuyi and Anularya bicostata. Molecular phylogenies based on analyses of three gene fragments have identical topologies, supporting the monophyly of these genera. The sister group of Margarya s.s. is Cipangopaludina, whereas the sister group of Anularya is Sinotaia; Tchangmargarya is sister to a clade containing all the aforementioned groups. Features of the operculum and the right male tentacle (penis) are particularly informative on the generic level, whereas shell and radular characters are especially useful to differentiate species. The phylogenetic relationships recovered here are consistent with orogenic patterns of the Yunnan Mountains. Changes in the river system and water area of ancient lakes caused by tectonic activities probably play an important role in speciation and shaping the current pattern of species distribution in Yunnan. © 2015 The Linnean Society of London  相似文献   

5.
In the present study, three new strains of the rare volvocalean green alga Lobomonas were isolated from field‐collected samples, one from Sardinia (Italy) and two from Argentina, and comparatively studied. The Sardinian and one of the Argentinian strains were identified as Lobomonas francei, the type species of the genus, whereas the second Argentinian strain corresponded to L. panduriformis. Two additional nominal species of Lobomonas from culture collections (L. rostrata and L. sphaerica) were included in the analysis and shown to be morphologically and molecularly identical to the L. francei strains. The presence, number, and shapes of cell wall lobes, the diagnostic criterion of Lobomonas, were shown to be highly variable depending on the chemical composition of the culture medium used. The analyses by SEM gave evidence that the cell wall lobes in Lobomonas originate at the junctions of adjacent cell wall plates by extrusion of gelatinous material. The four L. francei strains had identical nrRNA gene sequences and differed by only one or two substitutions in the ITS1 + ITS2 sequences. In the phylogenetic analyses, L. francei and L. panduriformis were sister taxa; however, another nominal Lobomonas species (L. monstruosa) did not belong to this genus. Lobomonas, together with taxa designated as Vitreochlamys, Tetraspora, and Paulschulzia, formed a monophyletic group that in the combined analyses was sister to the “Chlamydomonas/Volvox‐clade.” Based on these results, Lobomonas was revised, the diagnosis of the type species emended, a lectotype and an epitype designated, and several taxa synonymized with the type species.  相似文献   

6.
Forest or mouse shrews (Myosorex) represent a small but important radiation of African shrews generally adapted to montane and/or temperate conditions. The status of populations from Zimbabwe, Mozambique, and the north of South Africa has long been unclear because of the variability of traits that have traditionally been ‘diagnostic’ for the currently recognized South African taxa. We report molecular (mitochondrial DNA and nuclear DNA), craniometric, and morphological data from newly collected series of Myosorex from Zimbabwe (East Highlands), Mozambique (Mount Gorogonsa, Gorongosa National Park), and the Limpopo Province of South Africa (Soutpansberg Range) in the context of the available museum collections from southern and eastern Africa and published DNA sequences. Molecular data demonstrate close genetic similarity between populations from Mozambique and Zimbabwe, and this well‐supported clade (herein described as a new species, M yosorex meesteri sp. nov. ) is the sister group of all South African taxa, except for Myosorex longicaudatus Meester & Dippenaar, 1978. Populations of Myosorex in Limpopo Province (herein tentatively assigned to Myosorex cf. tenuis) are cladistically distinct from both Myosorex varius (Smuts, 1832) and Myosorex cafer (Sundevall, 1846), and diverged from M. varius at approximately the same time (2.7 Mya) as M. cafer and Myosorex sclateri Thomas & Schwann, 1905 diverged (2.4 Mya). Morphometric data are mostly discordant with the molecular data. For example, clearly distinct molecular clades overlap considerably in craniometric variables. On the other hand, extreme size differentiation occurs between genetically closely related populations in the Soutpansberg Range, which coincides with the bissection of the mountain range by the dry Sand River Valley, indicating the potential for strong intraspecific phenotypic divergence in these shrews. © 2013 The Linnean Society of London  相似文献   

7.
 The taxonomic transfer of the 23 Trigonella species previously known as medicagoids to the genus Medicago L. is reanalyzed on the basis of a molecular phylogenetic approach. The internal and external transcribed spacers of 53 Medicago species s. str. and 10 of the 23 medicagoid species were sequenced. Both maximum parsimony or maximum likelihood criteria joined medicagoid species more confidently with Medicago rather than with Trigonella. The basal position of the medicagoid species within the genus Medicago, together with morphologically atypical Medicago species (such as M. radiata and M. platycarpa), raised the question of the expediency to define a new genus and is discussed, relatively to the support of each clade. Using criteria of monophyly and support, it was concluded that the medicagoids are better joined in Medicago rather than placed in a new genus. Received February 6, 2001 Accepted July 17, 2001  相似文献   

8.
The taxonomic placement of four antarctic species of the marine red algal family Phyllophoraceae (Gigartinales) is assessed within a preliminary molecular phylogeny of the family based on direct sequence analysis of the chloroplast gene rbcL. Parsimony analysis of rbcL sequences indicates that Gymnogongrus antarcticus and Gymnogongrus turquetii cluster in a clade consisting predominantly of southern hemisphere species currently placed in Gymnogongrus and Ahnfeltiopsis, whereas Phyllophora ahnfeltioides and Phyllophora antarctica cluster in a separate clade that is widely divergent from the northern hemisphere Phyllophora clade. Results from molecular and morphological data challenge the current taxonomic concept that type of life history is a phylogenetically valid criterion for recognition of genera in the Phyllophoraceae.  相似文献   

9.
The eleotrid fish Eleotris sandwicensis inhabits lower reaches of streams in the Hawaiian Archipelago, where it feeds on juveniles of native amphidromous gobiid fishes migrating upstream from the ocean. Using high‐speed video and geometric modelling, we evaluated the feeding kinematics and performance of E. sandwicensis on free swimming prey, including two species with juveniles of different characteristic sizes, and compared successful and unsuccessful strikes. With fast jaw movements and a highly expansive buccal cavity, E. sandwicensis achieves high suction performance that enables the capture of elusive prey. Our analyses indicated that the species with larger juveniles (Sicyopterus stimpsoni) could be captured from a distance of up to 18.6% of the predator's body length (BL), but capture of the smaller species (Awaous guamensis) required a closer distance (12.2% BL). Predator–prey distance appears to be the predominant factor determining strike outcome during feeding on juvenile A. guamensis. However, during feeding on juvenile S. stimpsoni, E. sandwicensis shows modulations of strike behaviour that correlate with capture success. Moreover, the ability of E. sandwicensis to capture larger prey fish from longer distances suggests a potential biomechanical basis underlying observations that predation by eleotrids imposes significant selection against large body size in juvenile gobies. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 359–374.  相似文献   

10.
11.
Aims: The gram‐positive bacterial genus Lactococcus has been taxonomically classified into seven species (Lactococcus lactis, Lactococcus garvieae, Lactococcus piscium, Lactococcus plantarum, Lactococcus raffinolactis, Lactococcus chungangensis and Lactococcus fujiensis). This study aimed to develop a novel multiplex polymerase chain reaction (PCR) primer set for the identification of the seven lactococcal species, as well as to differentiate the two industrially important dairy subspecies, L. lactis subsp. lactis and L. lactis subsp. cremoris. Methods and Results: A multiplex PCR primer set was designed based on the nucleotide sequences of the 16S rRNA gene of the seven lactococcal species. The specificity of the established one‐step multiplex PCR scheme was verified using more than 200 bacterial strains, in which a complete sequence match was confirmed by partial sequencing of their 16S rRNA gene. Conclusions: The one‐step multiplex PCR enables the identification and speciation of bacterial strains belonging to the genus Lactococcus and the differentiation of strains of L. lactis subsp. lactis and L. lactis subsp. cremoris. Significance and Impact of the Study: This work provides an efficient method for identification of lactococcal strains of industrial importance.  相似文献   

12.
Members of the Watanabea clade of Trebouxiophyceae are genetically diverse and widely distributed in all kinds of habitats, especially in most terrestrial habitats. Ten new strains of terrestrial algae isolated from the tropical rainforest in China, and four published strains were investigated in this study. Morphological observation and molecular phylogenetic analyses based on the 18S, ITS, rbcL, and tufA genes were used to identify the new strains. Four previously described species were reinvestigated to supplement molecular data and autospores’ morphological photographs. The phylogenetic analyses based on 18S only, the concatenated dataset of 18S and ITS, as well as the concatenated dataset of rbcL and tufA, showed the same phylogenetic positions and relationships of these new strains. According to the phylogenetic analysis and morphological comparisons results, we described these 10 strains as four new members within the Watanabea clade, Polulichloris yunnanensis sp. nov., Polulichloris ovale sp. nov., Massjukichlorella orientale sp. nov., and Massjukichlorella minus sp. nov., and two known species, Massjukichlorella epiphytica, and Mysteriochloris nanningensis. Additionally, we provide strong evidence proving that Phyllosiphon, Mysteriochloris, Polulichloris, and Desertella all reproduce through unequal sized autospores.  相似文献   

13.
Laurencia majuscula has recently been determined to be conspecific with Laurencia dendroidea. To determine the correct taxonomic placement of its only non‐typical variety, L. majuscula var. elegans, mitochondrial COI‐5P and chloroplast rbcL gene sequences were analyzed and its phylogenetic position was inferred. Laurencia majuscula var. elegans consistently formed a well‐supported clade distinctly separate from the L. dendroidea clade. Molecular analyses revealed that L. majuscula var. elegans generally shows two distinct forms; a long‐branched form, and a compact form. Often the compact form has been identified as a different species based on morphology alone. Included in these analyses were topotype sequences of two species with which L. majuscula var. elegans is most often misidentified; Laurencia nidifica and Laurencia mcdermidiae. Laurencia nidifica formed a well‐supported clade separate from L. majuscula var. elegans. Laurencia mcdermidiae, however, formed a well‐defined clade sister to the L. majuscula var. elegans clade. Morphological comparisons were also made. It is concluded that L. majuscula var. elegans is morphologically distinct from L. dendroidea, L. nidifica, and L. mcdermidiae. It is proposed that L. majuscula var. elegans be reinstated to species level as L. elegans.  相似文献   

14.
The small phytoplankton genus Triparma belongs to the class Bolidophyceae and contains two distinct forms: silicified species and naked flagellated species (formerly Bolidomonas). Recent studies showed that four silicified species/strains (Triparma laevis f. inornata, T. laevis f. longispina, T. strigata, and T. aff. verrucosa) belong to a single clade that is paraphyletic, because it also contains an unclassified flagellated strain, and is sister to a flagellated species, T. eleuthera. In this study, we isolated and characterized two new strains of silicified species to test the phylogenetic unity of silicified bolidophytes. The isolates were identified as T. retinervis strains because they possessed fine areolation on the cell wall. 18S rDNA and rbcL phylogenetic analyses demonstrated that T. retinervis formed a new silicified clade that is sister to the flagellated species T. pacifica. This reveals that there are at least two distinct clades including both silicified and flagellated Triparma species.  相似文献   

15.
In the western Atlantic Ocean, the brown algal genus Lobophora is currently represented by a single species, L. variegata, with a type locality designated by Lamouroux as ‘Antilles’. In this study, we used molecular-assisted alpha taxonomy (MAAT) to assess species diversity of Lobophora in Bermuda, the Florida Keys, St. Croix and Guadeloupe (Lesser Antilles). Using cox1 and cox3 sequences as barcode markers, five species of Lobophora, four of them novel, were delineated, all previously having been identified in the area as L. variegata. Our morphological and habitat studies, made possible by abundant sampling, have revealed unique characters for each of these western Atlantic species, including distinct cellular arrangements, as well as different depth ranges for certain species. Observations made from Lamouroux’s holotype of Dictyota variegata (= Lobophora variegata) allowed us to assess the anatomy of this species, which enabled us to easily align this early taxon to one of our genetic species from the western Atlantic. As the type was unavailable for genetic analysis, we selected a recent St. Croix (Virgin Is., Antilles) specimen as the epitype to support it with molecular sequence data.  相似文献   

16.
The Rufous‐headed Robin Larvivora ruficeps is one of the world's rarest and least known birds. We summarize the known records since it was first described in 1905 from Shaanxi Province, central China. All subsequent Chinese records are from seven adjacent localities in nearby Sichuan Province. We studied its phylogenetic position for the first time using mitochondrial and nuclear markers for all species of Larvivora and a broad selection of other species in the family Muscicapidae. Our results confirmed that L. ruficeps is appropriately placed in the genus Larvivora, and suggested that it is sister to the Rufous‐tailed Robin Larvivora sibilans, with these two forming a sister clade to a clade comprising both the Japanese Robin Larvivora akahige and Ryukyu Robin Larvivora komadori. Siberian Blue Robin Larvivora cyane and Indian Blue Robin Larvivora brunnea form the sister clade to the other Larvivora species. In contrast, song analyses indicated that the song of L. ruficeps is most similar to that of L. komadori, whereas the song of L. sibilans is relatively more similar to that of L. akahige, and songs of L. cyane and L. brunnea closely resemble each other. We used ecological niche modelling to estimate the suitable habitats of L. ruficeps based on the records from breeding grounds, suggesting that north and central Sichuan, south Gansu, south Shaanxi and south‐east Tibet are likely to contain the most suitable habitats for this species.  相似文献   

17.
Maximum likelihood analysis of 113 rbcL sequences leads to a well resolved phylogeny of Jungermanniales. All species with perigynia or marsupia are found in one clade, whereas species with coelocaules are placed in several lineages. The broadly circumscribed Geocalycaceae (including Lophocoleaceae) of most recent authors are resolved as polyphyletic. Geocalycaceae genera which develop female involucres without involvement of stem tissue (Chiloscyphus, Heteroscyphus, Leptoscyphus, Physotheca) form a robust clade which is placed sister to Plagiochilaceae whereas the genera with involucres originating at least partly from stem tissue (Geocalycaceae s.str., Geocalyx, Harpanthus, Saccogyna) are nested within the paraphyletic Jungermanniaceae. This topology leads to the exclusion of the strictly perianth-bearing species from Geocalycaceae and the reinstatement of Lophocoleaceae. Campanocolea is nested within Chiloscyphus. Physotheca and Chiloscyphus breutelii are placed within an unsupported clade with several accessions of Leptoscyphus. Heteroscyphus forms a paraphyletic grade at the base of Chiloscyphus.  相似文献   

18.
Phylogenetic relationships, limits of species, and genera within Lycoperdaceae, were inferred by use of ITS and LSU nu-rDNA sequence data. Lycoperdaceae was confirmed as monophyletic, and Mycenastrum corium as a sister taxon to the ingroup. Four major clades were identified and received weak to moderate support and correspond with the genera Lycoperdon, Bovista, Calvatia, and Disciseda. The Lycoperdon clade includes species from Lycoperdon, Vascellum, Morganella, Handkea, Bovistella, and Calvatia. The structure within the Lycoperdon clade is unresolved and several clades are more or less unsupported, which suggests treating the supported Lycoperdon clade as the genus Lycoperdon. L. nigrescens and L. caudatum occur on single branches and their phylogenetic positions could not be resolved. The phylogenetic analyses identified 31 species of Lycoperdon, 11 species of Bovista, six species of Calvatia, and two species of Disciseda. In Lycoperdon three new species were recognized. A new species closely related to B. limosa is identified and discussed. A classification of Lycoperdaceae is proposed based on the results of the phylogenetic analyses. Morphological characters of species within and among identified clades are discussed.  相似文献   

19.
We describe a new species of fanged frog (Limnonectes larvaepartus) that is unique among anurans in having both internal fertilization and birth of tadpoles. The new species is endemic to Sulawesi Island, Indonesia. This is the fourth valid species of Limnonectes described from Sulawesi despite that the radiation includes at least 15 species and possibly many more. Fewer than a dozen of the 6455 species of frogs in the world are known to have internal fertilization, and of these, all but the new species either deposit fertilized eggs or give birth to froglets.  相似文献   

20.
 Using two molecular data sets, the plastid atpB-rbcL intergenic spacer region and the nuclear ribosomal internal transcribed spacer regions (ITS), the taxonomic affinities of two newly available Anemone species from the Southern Hemisphere were tested. From previous work based on morphology and geographic distribution, it was assumed that A. tenuicaulis from New Zealand was most closely related to the Tasmanian A. crassifolia, whereas the affinity of A. antucensis from Chile and Argentina was regarded as uncertain. Analyses of molecular sequence data from these and 18 other species of Anemone s.lat. (with Clematis as outgroup) result in trees largely congruent with past analyses based on morphology and plastid restriction site data. They strongly support A. richardsonii and A. canadensis (with boreal distributions in the Northern Hemisphere) as paraphyletic to a well supported Southern Hemisphere clade consisting of A. antucensis and A. tenuicaulis. This group of four species is part of an otherwise predominantly Northern Hemisphere assemblage (subgenus Anemonidium s.lat., chromosome base number x=7), including A. narcissiflora, A. obtusiloba, A. keiskeana and A. (=Hepatica) americana. All other austral species included in the present sampling, A. crassifolia (Tasmania), A. knowltonia (=Knowltonia capensis), and A. caffra (both South African), form a separate clade, sister to A. (=Pulsatilla) occidentalis and other Northern Hemisphere anemones (subgenus Anemone s.lat., x=8). Possible phytogeographical links of the Southern Hemisphere species are discussed. Received April 23, 2001 Accepted October 4, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号