首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Many viruses depend on nuclear proteins for replication. Therefore, their viral genome must enter the nucleus of the host cell. In this review we briefly summarize the principles of nucleocytoplasmic transport, and then describe the diverse strategies used by viruses to deliver their genomes into the host nucleus. Some of the emerging mechanisms include: (1) nuclear entry during mitosis, when the nuclear envelope is disassembled, (2) viral genome release in the cytoplasm followed by entry of the genome through the nuclear pore complex (NPC), (3) capsid docking at the cytoplasmic side of the NPC, followed by genome release, (4) nuclear entry of intact capsids through the NPC, followed by genome release, and (5) nuclear entry via virus-induced disruption of the nuclear envelope. Which mechanism a particular virus uses depends on the size and structure of the virus, as well as the cellular cues used by the virus to trigger capsid disassembly and genome release. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.  相似文献   

2.
3.
Signal-dependent targeting of proteins into and out of the nucleus is mediated by members of the importin (IMP) family of transport receptors, which recognise targeting signals within a cargo protein and mediate passage through the nuclear envelope-embedded nuclear pore complexes. Regulation of this process is paramount to processes such as cell division and differentiation, but is also critically important for viral replication and pathogenesis; phosphorylation appears to play a major role in regulating viral protein nucleocytoplasmic trafficking, along with other posttranslational modifications. This review focuses on viral proteins that utilise the host cell IMP machinery in order to traffic into/out of the nucleus, and in particular those where trafficking is critical to viral replication and/or pathogenesis, such as simian virus SV40 large tumour antigen (T-ag), human papilloma virus E1 protein, human cytomegalovirus processivity factor ppUL44, and various gene products from RNA viruses such as Rabies. Understanding of the mechanisms regulating viral protein nucleocytoplasmic trafficking is paramount to the future development of urgently needed specific and effective anti-viral therapeutics. This article was originally intended for the special issue "Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import". The Publisher apologizes for any inconvenience caused.  相似文献   

4.
About 15-20% of human cancers worldwide have viral etiology. Emerging data clearly indicate that several human DNA and RNA viruses, such as human papillomavirus, Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus, hepatitis B virus, hepatitis C virus, and human T-cell lymphotropic virus, contribute to cancer development. Human tumor-associated viruses have evolved multiple molecular mechanisms to disrupt specific cellular pathways to facilitate aberrant replication. Although oncogenic viruses belong to different families, their strategies in human cancer development show many similarities and involve viral-encoded oncoproteins targeting the key cellular proteins that regulate cell growth. Recent studies show that virus and host interactions also occur at the epigenetic level. In this review, we summarize the published information related to the interactions between viral proteins and epigenetic machinery which lead to alterations in the epigenetic landscape of the cell contributing to carcinogenesis.  相似文献   

5.
Viruses have been invaluable tools for discovering key pathways of nucleocytoplasmic transport. Conversely, disruption of specific nuclear transport pathways, are crucial for the productive life cycle of some viruses. The major cellular mRNA export pathway, which uses TAP (NXF1)/p15(NXT) as receptor, was discovered as a result of TAP interaction with CTE-containing RNAs from Mason-Pfizer Monkey Virus. In addition, CRM1 or exportin 1, which is a transport receptor that mediates nuclear export of proteins, snRNAs, rRNAs and a small subset of mRNAs, was discovered as an interacting partner of the Rev protein of HIV1. Viruses may disrupt the nuclear transport machinery to prevent host antiviral response. VSV Matrix (M) protein inhibits mRNA export by forming a complex with the mRNA export factor Rae1 whereas poliovirus inhibits nuclear import of proteins by probably degrading Nup62 and Nup153. Hence, this review focuses on viruses as tools and as disruptors of nucleocytoplasmic trafficking.  相似文献   

6.
Nucleocytoplasmic trafficking of many cellular proteins is regulated by nuclear import/export signals as well as post-translational modifications such as covalent conjugation of ubiquitin and small ubiquitin-related modifiers (SUMOs). Ubiquitination and SUMOylation are rapid and reversible ways to modulate the intracellular localisation and function of substrate proteins. These pathways have been co-opted by some viruses, which depend on the host cell machinery to transport their proteins in and out of the nucleus. In this review, we will summarise our current knowledge on the ubiquitin/SUMO-regulated nuclear/subnuclear trafficking of cellular proteins and describe examples of viral exploitation of these pathways.  相似文献   

7.
Autophagy refers to the conserved, multi-step mechanism that delivers cytosolic cargoes to vesicles of the endo-lysosomal system for degradation. It maintains cellular homeostasis by ensuring the continuous degradation of misformed/senescent intracellular components and the associated recycling of nutrients. Autophagy also represents an important cell-intrinsic defense mechanism against invasion by intracellular pathogens, including viruses. Autophagy might oppose viral invasion by targeting viral particles or viral components for degradation. It can also promote the interaction of viral constituents with receptors specialized in the activation of innate immunity pathways or facilitate the activation of anti-viral adaptive immunity. In response to such pressures, viruses have evolved various sophisticated strategies to avoid anti-viral autophagic responses or to manipulate the autophagic machinery to promote their own replication. This review focuses on our current knowledge of autophagy-related events that take place at early stages during interaction of viruses with host cells as well as on their associated consequences in terms of virus replication and cell fate.  相似文献   

8.
9.
Import o f viral DNA into the nucleus is essential for the successful replication o f DNA tumour viruses. To achieve this goal, viruses have adapted strategies to traverse the barriers between the plasma membrane and the nucleus o f a host cell. Two DNA tumour viruses, simian virus 40 and adenovirus, achieve the nuclear-entry step in slightly different ways. SV40 DNA enters the nucleus through the nuclear pore complexes (NPCs) in apparently intact virions. By contrast, adenovirus particles dissociate near the NPC before the viral DNA is imported into the nucleus. In both cases, karyophilic protein components o f the viruses appear to mediate nuclear entry o f the viral genomes. In this article, we discuss how an understanding o f the cell biology o f virus entry can help us understand the process o f nuclear transport.  相似文献   

10.
11.
Nuclear import and export are crucial processes for any eukaryotic cell, as they govern substrate exchange between the nucleus and the cytoplasm. Proteins involved in the nuclear transport network are generally conserved among eukaryotes, from yeast and fungi to animals and plants. Various pathogens, including some plant viruses, need to enter the host nucleus to gain access to its replication machinery or to integrate their DNA into the host genome; the newly replicated viral genomes then need to exit the nucleus to spread between host cells. To gain the ability to enter and exit the nucleus, these pathogens encode proteins that recognize cellular nuclear transport receptors and utilize the host's nuclear import and export pathways. Here, we review and discuss our current knowledge about the molecular mechanisms by which plant viruses find their way into and out of the host cell nucleus.  相似文献   

12.
13.
Nucleocytoplasmic transport of viral ribonucleoproteins (vRNPs) is an essential aspect of the replication cycle for influenza A, B, and C viruses. These viruses replicate and transcribe their genomes in the nuclei of infected cells. During the late stages of infection, vRNPs must be exported from the nucleus to the cytoplasm prior to transport to viral assembly sites on the cellular plasma membrane. Previously, we demonstrated that the influenza A virus nuclear export protein (NEP, formerly referred to as the NS2 protein) mediates the export of vRNPs. In this report, we suggest that for influenza B and C viruses the nuclear export function is also performed by the orthologous NEP proteins (formerly referred to as the NS2 protein). The influenza virus B and C NEP proteins interact in the yeast two-hybrid assay with a subset of nucleoporins and with the Crm1 nuclear export factor and can functionally replace the effector domain from the human immunodeficiency virus type 1 Rev protein. We established a plasmid transfection system for the generation of virus-like particles (VLPs) in which a functional viral RNA-like chloramphenicol acetyltransferase (CAT) gene is delivered to a new cell. VLPs generated in the absence of the influenza B virus NEP protein were unable to transfer the viral RNA-like CAT gene to a new cell. From these data, we suggest that the nuclear export of the influenza B and C vRNPs are mediated through interaction between NEP proteins and the cellular nucleocytoplasmic export machinery.  相似文献   

14.
核质转运是真核细胞生命活动重要的组成部分,细胞核内蛋白的平衡及转录出的RNA出核成熟过程都依赖于核输出,核输出与真核生物的生命活动密切相关;病原物在侵染昆虫时也会利用宿主的核输出机制干扰宿主的免疫反应或劫持宿主的核输出蛋白以利于病毒的组装及复制.本文主要介绍真核细胞中核输出的基本机制、蚊子和果蝇等模式昆虫中核输出通路;简述核输出机制在昆虫胚胎发育及免疫等生理活动及信号通路中的影响,以及与昆虫相关的病毒蛋白对昆虫等宿主核输出机制的利用和破坏情况.  相似文献   

15.
The study of viral proteins and host cell factors that interact with them has represented an invaluable contribution to understanding of the physiology as well as associated pathology of key eukaryotic cell processes such as cell cycle regulation, signal transduction and transformation. Similarly, knowledge of nucleocytoplasmic transport is based largely on pioneering studies performed on viral proteins that enabled the first sequences responsible for the facilitated transport through the nuclear pore to be identified. The study of viral proteins has also enabled the discovery of several nucleocytoplasmic regulatory mechanisms, the best characterized being through phosphorylation. Recent delineation of the mechanisms whereby phosphorylation regulates nuclear import and export of key viral gene products encoded by important human pathogens such as human cytomegalovirus dengue virus and respiratory syncytial virus has implications for the development of antiviral therapeutics. In particular, the development of specific and effective kinase inhibitors makes the idea of blocking viral infection by inhibiting the phosphorylation-dependent regulation of viral gene product nuclear transport a real possibility. Additionally, examination of a chicken anemia virus (CAV) protein able to target selectively into the nucleus of tumor but not normal cells, as specifically regulated by phosphorylation, opens the exciting possibility of cancer cell-specific nuclear targeting. The study of nucleoplasmic transport may thus enable the development not only of new antiviral approaches, but also contribute to anti-cancer strategies.  相似文献   

16.
N. Belgareh  V. Doye 《Protoplasma》1999,209(3-4):133-143
Summary The nuclear-pore complex (NPC), which consists of ca. 50 proteins called nucleoporins, is a huge macromolecular structure that spans the nuclear envelope and is an obligatory passage for molecules in transit between the cytoplasm and the nucleus. In the last years, major progress has allowed the characterization of the so-called soluble phase of nucleocytoplasmic transport, that involves transport substrates, import and export receptors of which some belong to the karyopherin- family, and the small GTPase Ran and its modulators. In addition, the knowledge of the NPC architecture, the identification of its constituents, and the determination of the hierarchy of interactions within the pore should help to understand how nucleoporins are assembled, and how they give rise to a functional NPC through interactions with specific transport factors. In this review, we will focus on recent insights into the stationary phase of nucleocytoplasmic transport (i.e., the NPCs) that have been gained from exploiting the benefits of several organisms, such asXenopus laevis oocytes, mammalian cell lines, and the yeastSaccharomyces cerevisiae.Abbreviations FXFG phenylalanine X phenylalanine glycine - GLFG glycine leucine phenylalanine glycine - NPC nuclear-pore complex - RLNE rat liver nuclear envelope - WGA wheat germ agglutinin  相似文献   

17.
Transport between the nucleus and cytoplasm is mediated by nuclear pore complexes (NPCs), perforations in the double-membrane of the nuclear envelope. NPCs are huge protein assemblies made up of distinct subcomplexes. The complex modular nature of the NPC and limitations in the current experimental approaches render the analysis of NPCs and nucleocytoplasmic transport at the molecular level difficult. Recent efforts in the NPC/nucleocytoplasmic transport field have focused on elucidating the core components that make up NPC structure (or the lack thereof) and function. These include results obtained by more conventional methods, such as electron microscopy or biochemical strategies, as well as more advanced applications, such as X-ray crystallography and atomic force microscopy.  相似文献   

18.
Gustin KE  Sarnow P 《The EMBO journal》2001,20(1-2):240-249
Infection of eukaryotic cells with lytic RNA viruses results in extensive interactions of viral gene products with macromolecular pathways of the host, ultimately leading to death of the infected cells. We show here that infection of cells with poliovirus results in the cytoplasmic accumulation of a variety of shuttling and non-shuttling nuclear proteins that use multiple nuclear import pathways. In vitro nuclear import assays using semi-permeabilized infected cells confirmed that nuclear import was blocked and demonstrated that docking of nuclear import receptor-cargo complexes at the cytoplasmic face of the nuclear pore complex (NPC) was prevented. Analysis of components of the NPC revealed that two proteins, Nup153 and p62, were proteolyzed during poliovirus infection. These results suggest that the cytoplasmic relocalization of numerous cellular proteins is caused by the inhibition of multiple nuclear import pathways via alterations in NPC composition in poliovirus-infected cells. Blocking of nuclear import points to a novel strategy by which cytoplasmic RNA viruses can evade host immune defenses, by preventing signal transduction to the nucleus.  相似文献   

19.
Despite the significant progress in the identification of essential components of the nuclear transport machinery, some events of this process are still unclear. Particularly, functional information about the release of nuclear-exported macromolecules at the cytoplasmic side of the nuclear pore complex and their subsequent trans-cytoplasmic movement is lacking. Recently, we identified a cytoplasmic GTPase, designated NIG (NSP-interacting GTPase), which may play a relevant role in these processes. NIG interacts in vivo with the geminivirus NSP and promotes the translocation of the viral protein from the nucleus to the cytoplasm where it is redirected to the cell surface to interact with the viral movement protein, MP. Here we position the NIG function into the mechanistic model for the intracellular trafficking of viral DNA and discuss the putative role of NIG in general cellular nucleocytoplasmic transport of nucleic acid-protein complexes.Key words: geminivirus, NIG, NSP, nucleocytoplasmic trafficking, transport activity  相似文献   

20.
MicroRNAs have emerged as key players in the regulation of various biological processes in eukaryotes, including host-pathogen interactions. Recent studies suggest that viruses encode miRNAs to manipulate their host gene expression to ensure their effective proliferation, whereas the host limits virus infection by differentially expressing miRNAs that target essential viral genes. Here, we demonstrate that an insect virus, Bombyx mori nucleopolyhedrosis virus (BmNPV), modulates the small-RNA-mediated defense of its host, B. mori, by encoding an miRNA (bmnpv-miR-1) that downregulates the expression of the host GTP-binding nuclear protein Ran, an essential component of the exportin-5-mediated nucleocytoplasmic transport machinery mainly involved in small-RNA transport from the nucleus to the cytoplasm. We demonstrate the sequence-dependent interaction of bmnpv-miR-1 with Ran mRNA using cell culture and in vivo assays, including RNA interference (RNAi) of Ran. Our results clearly show that bmnpv-miR-1 represses Ran, leading to reduction in the host small-RNA population, and consequently, the BmNPV load increases in the infected larvae. Blocking of bmnpv-miR-1 resulted in higher expression levels of Ran and a decrease in BmNPV proliferation. In contrast, blockage of host miRNA, bmo-miR-8, which targets the immediate-early gene of the virus and whose production was repressed upon bmnpv-miR-1 and Ran dsRNA administration, resulted in a significant increase in the virus load in the infected B. mori larvae. The present study provides an insight into one of the evasion strategies used by the virus to counter the host defense for its effective proliferation and has relevance to the development of insect virus control strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号