首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polarized epithelial cells sort newly synthesized and recycling plasma membrane proteins into distinct trafficking pathways directed to either the apical or basolateral membrane domains. While the trans‐Golgi network is a well‐established site of protein sorting, increasing evidence indicates a key role for endosomes in the initial trafficking of newly synthesized proteins. Both basolateral and apical proteins have been shown to traverse endosomes en route to the plasma membrane. In particular, apical proteins traffic through either subapical early or recycling endosomes. Here we use the SNAP tag system to analyze the trafficking of the apical protein gp135, also known as podocalyxin. We show that newly synthesized gp135 traverses the apical recycling endosome, but not the apical early endosomes (AEEs). In contrast, post‐endocytic gp135 is delivered to the AEE before recycling back to the apical membrane. The pathways pursued by the newly synthesized and recycling gp135 populations do not detectably intersect, demonstrating that the biosynthetic and post‐endocytic pools of this protein are subjected to distinct sorting processes.   相似文献   

2.
Research following introduction of the MDCK model system to study epithelial polarity (1978) led to an initial paradigm that posited independent roles of the trans Golgi network (TGN) and recycling endosomes (RE) in the generation of, respectively, biosynthetic and recycling routes of plasma membrane (PM) proteins to apical and basolateral PM domains. This model dominated the field for 20 years. However, studies over the past decade and the discovery of the involvement of clathrin and clathrin adaptors in protein trafficking to the basolateral PM has led to a new paradigm. TGN and RE are now believed to cooperate closely in both biosynthetic and recycling trafficking routes. Here, we critically review these recent advances and the questions that remain unanswered.  相似文献   

3.
Cholera toxin causes diarrheal disease by binding ganglioside GM1 on the apical membrane of polarized intestinal epithelial cells and trafficking retrograde through sorting endosomes, the trans-Golgi network (TGN), and into the endoplasmic reticulum. A fraction of toxin also moves from endosomes across the cell to the basolateral plasma membrane by transcytosis, thus breeching the intestinal barrier. Here we find that sorting of cholera toxin into this transcytotic pathway bypasses retrograde transport to the TGN. We also find that GM1 sphingolipids can traffic from apical to basolateral membranes by transcytosis in the absence of toxin binding but only if the GM1 species contain cis-unsaturated or short acyl chains in the ceramide domain. We found previously that the same GM1 species are needed to efficiently traffic retrograde into the TGN and endoplasmic reticulum and into the recycling endosome, implicating a shared mechanism of action for sorting by lipid shape among these pathways.  相似文献   

4.
Epithelial cells display distinct apical and basolateral membrane domains, and maintenance of this asymmetry is essential to the function of epithelial tissues. Polarized delivery of apical and basolateral membrane proteins from the trans Golgi network (TGN) and/or endosomes to the correct domain requires specific cytoplasmic machinery to control the sorting, budding and fission of vesicles. However, the molecular machinery that regulates polarized delivery of apical proteins remains poorly understood. In this study, we show that the small guanosine triphosphatase Rab14 is involved in the apical targeting pathway. Using yeast two-hybrid analysis and glutathione S-transferase pull down, we show that Rab14 interacts with apical membrane proteins and localizes to the TGN and apical endosomes. Overexpression of the GDP mutant form of Rab14 (S25N) induces an enlargement of the TGN and vesicle accumulation around Golgi membranes. Moreover, expression of Rab14-S25N results in mislocalization of the apical raft-associated protein vasoactive intestinal peptide/MAL to the basolateral domain but does not disrupt basolateral targeting or recycling. These data suggest that Rab14 specifically regulates delivery of cargo from the TGN to the apical domain.  相似文献   

5.
Endocytosed proteins are sorted in early endosomes to be recycled to the plasma membrane or transported further into the degradative pathway. We studied the role of endosomes acidification on the endocytic trafficking of the transferrin receptor (TfR) as a representative for the recycling pathway, the cation-dependent mannose 6-phosphate receptor (MPR) as a prototype for transport to late endosomes, and fluid-phase endocytosed HRP as a marker for transport to lysosomes. Toward this purpose, bafilomycin A1 (Baf), a specific inhibitor of the vacuolar proton pump, was used to inhibit acidification of the vacuolar system. Microspectrofluorometric measurement of the pH of fluorescein-rhodamine-conjugated transferrin (Tf)-containing endocytic compartments in living cells revealed elevated endosomal pH values (pH > 7.0) within 2 min after addition of Baf. Although recycling of endocytosed Tf to the plasma membrane continued in the presence of Baf, recycled Tf did not dissociate from its receptor, indicating failure of Fe3+ release due to a neutral endosomal pH. In the presence of Baf, the rates of internalization and recycling of Tf were reduced by a factor of 1.40 +/- 0.08 and 1.57 +/- 0.25, respectively. Consequently, little if any in TfR expression at the cell surface was measured during Baf treatment. Sorting between endocytosed TfR and MPR was analyzed by the HRP-catalyzed 3,3'- diaminobenzidine cross-linking technique, using transferrin conjugated to HRP to label the endocytic pathway of the TfR. In the absence of Baf, endocytosed surface 125I-labeled MPR was sorted from the TfR pathway starting at 10 min after uptake, reaching a plateau of 40% after 45 min. In the presence of Baf, sorting was initiated after 20 min of uptake, reaching approximately 40% after 60 min. Transport of fluid-phase endocytosed HRP to late endosomes and lysosomes was measured using cell fractionation and immunogold electron microscopy. Baf did not interfere with transport of HRP to MPR-labeled late endosomes, but nearly completely abrogated transport to cathepsin D- labeled lysosomes. From these results, we conclude that trafficking through early and late endosomes, but not to lysosomes, continued upon inactivation of the vacuolar proton pump.  相似文献   

6.
In the liver, the P‐type ATPase and membrane pump ATP7B plays a crucial role in Cu+ donation to cuproenzymes and in the elimination of excess Cu+. ATP7B is endowed with a COOH‐cytoplasmic (DE)XXXLL‐type traffic signal. We find that accessory (Lys ?3, Trp ?2, Ser ?1 and Leu +2) and canonical (D ?4, Leu 0 and Leu +1) residues confer the DKWSLLL signal with the versatility required for the Cu+‐regulated cycling of ATP7B between the trans‐Golgi network (TGN) and the plasma membrane (PM). The separate mutation of these residues caused a disruption of the signal, resulting in different ATP7B distribution phenotypes. These phenotypes indicate the key roles of specific residues at separate steps of ATP7B trafficking, including sorting at the TGN, transport from the TGN to the PM and its endocytosis, and recycling to the TGN and PM. The distinct roles of ATP7B in the TGN and PM and the variety of phenotypes caused by the mutation of the canonical and accessory residues of the DKWSLLL signal can explain the separate or joined presentation of Wilson's cuprotoxicosis and the dysfunction of the cuproenzymes that accept Cu+ at the TGN.   相似文献   

7.
The epithelial-specific adaptor AP1B sorts basolateral plasma membrane (PM) proteins in both biosynthetic and recycling routes, but the site where it carries out this function remains incompletely defined. Here, we have investigated this topic in Fischer rat thyroid (FRT) epithelial cells using an antibody against the medium subunit micro1B. This antibody was suitable for immunofluorescence and blocked the function of AP1B in these cells. The antibody blocked the basolateral recycling of two basolateral PM markers, Transferrin receptor (TfR) and LDL receptor (LDLR), in a perinuclear compartment with marker and functional characteristics of recycling endosomes (RE). Live imaging experiments demonstrated that in the presence of the antibody two newly synthesized GFP-tagged basolateral proteins (vesicular stomatitis virus G [VSVG] protein and TfR) exited the trans-Golgi network (TGN) normally but became blocked at the RE within 3-5 min. By contrast, the antibody did not block trafficking of green fluorescent protein (GFP)-LDLR from the TGN to the PM but stopped its recycling after internalization into RE in approximately 45 min. Our experiments conclusively demonstrate that 1) AP1B functions exclusively at RE; 2) TGN-to-RE transport is very fast and selective and is mediated by adaptors different from AP1B; and 3) the TGN and AP1B-containing RE cooperate in biosynthetic basolateral sorting.  相似文献   

8.
To maintain polarity, epithelial cells continuously sort transmembrane proteins to the apical or basolateral membrane domains during biosynthetic delivery or after internalization. During biosynthetic delivery, some cargo proteins move from the trans-Golgi network (TGN) into recycling endosomes (RE) before being delivered to the plasma membrane. However, proteins that regulate this transport step remained elusive. In this study, we show that Rab13 partially colocalizes with TGN38 at the TGN and transferrin receptors in RE. Knockdown of Rab13 with short hairpin RNA in human bronchial epithelial cells or overexpression of dominant-active or dominant-negative alleles of Rab13 in Madin-Darby canine kidney cells disrupts TGN38/46 localization at the TGN. Moreover, overexpression of Rab13 mutant alleles inhibits surface arrival of proteins that move through RE during biosynthetic delivery (vesicular stomatitis virus glycoprotein [VSVG], A-VSVG, and LDLR-CT27). Importantly, proteins using a direct route from the TGN to the plasma membrane are not affected. Thus, Rab13 appears to regulate membrane trafficking between TGN and RE.  相似文献   

9.
Polarized epithelial cells take up nutrients from the blood through receptors that are endocytosed and recycle back to the basolateral plasma membrane (PM) utilizing the epithelial‐specific clathrin adaptor AP‐1B. Some native epithelia lack AP‐1B and therefore recycle cognate basolateral receptors to the apical PM, where they carry out important functions for the host organ. Here, we report a novel transcytotic pathway employed by AP‐1B‐deficient epithelia to relocate AP‐1B cargo, such as transferrin receptor (TfR), to the apical PM. Lack of AP‐1B inhibited basolateral recycling of TfR from common recycling endosomes (CRE), the site of function of AP‐1B, and promoted its transfer to apical recycling endosomes (ARE) mediated by the plus‐end kinesin KIF16B and non‐centrosomal microtubules, and its delivery to the apical membrane mediated by the small GTPase rab11a. Hence, our experiments suggest that the apical recycling pathway of epithelial cells is functionally equivalent to the rab11a‐dependent TfR recycling pathway of non‐polarized cells. They define a transcytotic pathway important for the physiology of native AP‐1B‐deficient epithelia and report the first microtubule motor involved in transcytosis.  相似文献   

10.
Expression of the epithelial cell-specific heterotetrameric adaptor complex AP-1B is required for the polarized distribution of many membrane proteins to the basolateral surface of LLC-PK1 kidney cells. AP-1B is distinguished from the ubiquitously expressed AP-1A by exchange of its single 50-kD mu subunit, mu1A, being replaced by the closely related mu1B. Here we show that this substitution is sufficient to couple basolateral plasma membrane proteins, such as a low-density lipoprotein receptor (LDLR), to the AP-1B complex and to clathrin. The interaction between LDLR and AP-1B is likely to occur in the trans-Golgi network (TGN), as was suggested by the localization of functional, epitope-tagged mu1 by immunofluorescence and immunoelectron microscopy. Tagged AP-1A and AP-1B complexes were found in the perinuclear region close to the Golgi complex and recycling endosomes, often in clathrin-coated buds and vesicles. Yet, AP-1A and AP-1B localized to different subdomains of the TGN, with only AP-1A colocalizing with furin, a membrane protein that uses AP-1 to recycle between the TGN and endosomes. We conclude that AP-1B functions by interacting with its cargo molecules and clathrin in the TGN, where it acts to sort basolateral proteins from proteins destined for the apical surface and from those selected by AP-1A for transport to endosomes and lysosomes.  相似文献   

11.
To perform vectorial secretory and transport functions that are critical for the survival of the organism, epithelial cells sort plasma membrane proteins into polarized apical and basolateral domains. Sorting occurs post-synthetically, in the trans Golgi network (TGN) or after internalization from the cell surface in recycling endosomes, and is mediated by apical and basolateral sorting signals embedded in the protein structure. Basolateral sorting signals include tyrosine motifs in the cytoplasmic domain that are structurally similar to signals involved in receptor internalization by clathrin-coated pits. Recently, an epithelial-specific adaptor protein complex, AP1B, was identified. AP-1B recognizes a subset of basolateral tyrosine motifs through its mu 1B subunit. Here, we characterized the post-synthetic and post-endocytic sorting of the fast recycling low density lipoprotein receptor (LDLR) and transferrin receptor (TfR) in LLC-PK1 cells, which lack mu 1B and mis-sort both receptors to the apical surface. Targeting and recycling assays in LLC-PK1 cells, before and after transfection with mu 1B, and in MDCK cells, which express mu 1B constitutively, suggest that AP1B sorts basolateral proteins post-endocytically.  相似文献   

12.
Quantitative confocal microscopic analyses of living, polarized MDCK cells demonstrate different pH profiles for apical and basolateral endocytic pathways, despite a rapid and extensive intersection between the two. Three-dimensional characterizations of ligand trafficking demonstrate that the apical and basolateral endocytic pathways share early, acidic compartments distributed throughout the medial regions of the cell. Polar sorting for both pathways occurs in these common endosomes as IgA is sorted from transferrin to alkaline transcytotic vesicles. While transferrin is directly recycled from the common endosomes, IgA is transported to a downstream apical compartment that is nearly neutral in pH. By several criteria this compartment appears to be equivalent to the previously described apical recycling endosome. The functional significance of the abrupt increase in lumenal pH that accompanies IgA sorting is not clear, as disrupting endosome acidification has no effect on polar sorting. These studies provide the first detailed characterizations of endosome acidification in intact polarized cells and clarify the relationship between the apical and basolateral endocytic itineraries of polarized MDCK cells. The extensive mixing of apical and basolateral pathways underscores the importance of endocytic sorting in maintaining the polarity of the plasma membrane of MDCK cells.  相似文献   

13.
Low-density lipoprotein receptor–related protein 1 (LRP1) is an endocytic recycling receptor with two cytoplasmic tyrosine-based basolateral sorting signals. Here we show that during biosynthetic trafficking LRP1 uses AP1B adaptor complex to move from a post-TGN recycling endosome (RE) to the basolateral membrane. Then it recycles basolaterally from the basolateral sorting endosome (BSE) involving recognition by sorting nexin 17 (SNX17). In the biosynthetic pathway, Y29 but not N26 from a proximal NPXY directs LRP1 basolateral sorting from the TGN. A N26A mutant revealed that this NPXY motif recognized by SNX17 is required for the receptor's exit from BSE. An endocytic Y63ATL66 motif also functions in basolateral recycling, in concert with an additional endocytic motif (LL86,87), by preventing LRP1 entry into the transcytotic apical pathway. All this sorting information operates similarly in hippocampal neurons to mediate LRP1 somatodendritic distribution regardless of the absence of AP1B in neurons. LRP1 basolateral distribution results then from spatially and temporally segregation steps mediated by recognition of distinct tyrosine-based motifs. We also demonstrate a novel function of SNX17 in basolateral/somatodendritic recycling from a different compartment than AP1B endosomes.  相似文献   

14.
Polarized epithelial cells coexpress two almost identical AP-1 clathrin adaptor complexes: the ubiquitously expressed AP-1A and the epithelial cell–specific AP-1B. The only difference between the two complexes is the incorporation of the respective medium subunits μ1A or μ1B, which are responsible for the different functions of AP-1A and AP-1B in TGN to endosome or endosome to basolateral membrane targeting, respectively. Here we demonstrate that the C-terminus of μ1B is important for AP-1B recruitment onto recycling endosomes. We define a patch of three amino acid residues in μ1B that are necessary for recruitment of AP-1B onto recycling endosomes containing phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3]. We found this lipid enriched in recycling endosomes of epithelial cells only when AP-1B is expressed. Interfering with PI(3,4,5)P3 formation leads to displacement of AP-1B from recycling endosomes and missorting of AP-1B–dependent cargo to the apical plasma membrane. In conclusion, PI(3,4,5)P3 formation in recycling endosomes is essential for AP-1B function.  相似文献   

15.
The paradigms for transport along the biosynthetic route have changed dramatically over the past 15 years. Unlike the situation 15 years ago, the current paradigm involves sorting signals practically at every step of the pathway. In particular, at the exit from the Golgi complex, apical, basolateral and lysosomal targeting signals result in the generation of a variety of routes. Furthermore, it is now quite clear that not all sorting in the biosynthetic route occurs in the Golgi complex or the Trans Golgi Network (TGN). Sorting may occur distally to the Golgi, in recycling endosomes or in budded tubulosaccular structures, or it may occur proximally to the Golgi complex, at the exit from the ER. Several adaptors are candidates to sort apical and basolateral proteins but only AP1B and AP4 are currently involved. Progress is fast and future work should elucidate many of the open questions.  相似文献   

16.
Membrane polarity is maintained by a complex intermingling of various trafficking pathways, including basolateral and apical endocytosis. The present work was undertaken to better define the role of basolateral endocytic transport in apical membrane homeostasis. When polarized HepG2 hepatoma cells were incubated with calmodulin antagonists, the cells lost their polarity, as reflected by an inhibition of lipid transport of a fluorescent sphingomyelin to the apical membrane and an impediment of its recycling to the basolateral membrane. Instead, an accumulation of the lipid in dilated early endosomal compartments was observed, presumably due to a frustration of vesiculation. Interestingly, lipid transport to the apical pole, lipid recycling to the basolateral membrane and cell polarity were reestablished, while dilated compartments disappeared, when the cells were simultaneously treated with specific inhibitors of protein kinase C (PKC). Consistently, following activation of PKC, extensive dilation/vacuolation of early sorting endosomes was observed, very similar as seen upon treatment with calmodulin antagonists. Thus, the results indicate that membrane trafficking at early steps of the basolateral endocytic pathway in HepG2 cells is regulated by an intricate interplay between calmodulin and PKC. This interference, although not affecting endocytosis as such, compromises cell polarity by impeding membrane trafficking from early endosomes to the apical membrane.  相似文献   

17.
Protein delivery across polarized epithelia is controlled by receptor‐mediated transcytosis. Many studies have examined basolateral‐to‐apical trafficking of polymeric IgA (pIgA) by the polymeric immunoglobulin receptor (pIgR). Less is known about apical‐to‐basolateral transcytosis, the direction the neonatal Fc receptor (FcRn) transports maternal IgGs across intestinal epithelia. To compare apical‐to‐basolateral and basolateral‐to‐apical transcytosis, we co‐expressed FcRn and pIgR in Madin‐Darby canine kidney (MDCK) cells and used pulse‐chase experiments with confocal microscopy to examine transport of apically applied IgG Fcγ and basolaterally applied pIgA. Fcγ and pIgA trafficking routes were initially separate but intermixed at later chase times. Fcγ was first localized near the apical surface, but became more equally distributed across the cell, consistent with concomitant transcytosis and recycling. By contrast, pIgA transport was strongly unidirectional: pIgA shifted from near the basolateral surface to an apical location with increasing time. Some Fcγ and pIgA fluorescence colocalized in early (EEA1‐positive), recycling (Rab11a‐positive), and transferrin (Tf)‐positive common/basolateral recycling endosomes. Fcγ became more enriched in Tf‐positive endosomes with time, whereas pIgA was sorted from these compartments. Live‐cell imaging revealed that vesicles containing Fcγ or pIgA shared similar mobility characteristics and were equivalently affected by depolymerizing microtubules, indicating that both trafficking routes depended to roughly the same extent on intact microtubules.  相似文献   

18.
The copper-transporting ATPase ATP7B has a dual intracellular localization: the trans-Golgi network (TGN) and cytosolic vesicles. Changes in copper levels, kinase-mediated phosphorylation, and mutations associated with Wilson disease alter the steady-state distribution of ATP7B between these compartments. To identify a primary molecular event that triggers ATP7B exit from the TGN, we characterized the folding, activity, and trafficking of the ATP7B variants with mutations within the regulatory N-terminal domain (N-ATP7B). We found that structural changes disrupting the inter-domain contacts facilitate ATP7B exit from the TGN. Mutating Ser-340/341 in the N-ATP7B individually or together to Ala, Gly, Thr, or Asp produced active protein and shifted the steady-state localization of ATP7B to vesicles, independently of copper levels. The Ser340/341G mutant had a lower kinase-mediated phosphorylation under basal conditions and no copper-dependent phosphorylation. Thus, negative charges introduced by copper-dependent phosphorylation are not obligatory for ATP7B trafficking from the TGN. The Ser340/341A mutation did not alter the overall fold of N-ATP7B, but significantly decreased interactions with the nucleotide-binding domain, mimicking consequences of copper binding to N-ATP7B. We propose that structural changes that specifically alter the inter-domain contacts initiate exit of ATP7B from the TGN, whereas increased phosphorylation may be needed to maintain an open interface between the domains.  相似文献   

19.
Mammalian epithelial cell plasma membrane domains are separated by junctional complexes supported by actin. The extent to which actin acts elsewhere to maintain cell polarity remains poorly understood. Using latrunculin B (Lat B) to depolymerize actin filaments, several basolateral plasma membrane proteins were found to lose their polarized distribution. This loss of polarity did not reflect lateral diffusion through junctional complexes because a low-density lipoprotein receptor mutant lacking a functional endocytosis signal remained basolateral after Lat B treatment. Furthermore, Lat B treatment did not facilitate membrane diffusion across the tight junction as observed with ethylenediaminetetraacetic acid or dimethyl sulfoxide treatment. Detailed analysis of transferrin recycling confirmed Lat B depolarized recycling of transferrin from endosomes to the basolateral surface. Kinetic analysis suggested sorting was compromised at both basolateral early endosomes and perinuclear recycling endosomes. Despite loss of function, these two endosome populations remained distinct from each other and from early endosomes labeled by apically internalized ligand. Furthermore, apical and basolateral early endosomes were functionally distinct populations that directed traffic to a single common recycling endosomal compartment even after Lat B treatment. Thus, filamentous actin may help to guide receptor traffic from endosomes to the basolateral plasma membrane.  相似文献   

20.
The compartments involved in polarized exocytosis of membrane proteins are not well defined. In this study we hypothesized that newly synthesized polymeric immunoglobulin receptors are targeted from the trans-Golgi network to endosomes prior to their appearance on the basolateral cell surface of polarized Madin-Darby canine kidney cells. To examine this hypothesis, we have used an assay designed to measure the meeting of newly synthesized receptors with a selective population of apical or basolateral endosomes loaded with horseradish peroxidase. We found that in the course of basolateral exocytosis, the wild-type polymeric immunoglobulin receptor is targeted from the trans-Golgi network to apical and basolateral endosomes. Phosphorylation of a Ser residue in the cytoplasmic tail of the receptor is implicated in this process. The biosynthetic pathway of apically sorted polymeric immunoglobulin receptor mutants similarly traversed apical endosomes, raising the possibility that apical receptors are segregated from basolateral receptors in apical endosomes. The post-endocytic pathway of transcytosing and recycling receptors also passed through apical endosomes. Together, these observations are consistent with the possibility that the biosynthetic and endocytic routes merge into endosomes and justify a model suggesting that endosomal recycling processes govern polarized trafficking of proteins traveling in both pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号