首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Domain purity and interface structure are known to be critical for fullerene‐based bulk heterojunction (BHJ) solar cells, yet have been very difficult to study. Using novel soft X‐ray tools, we delineate the importance of these parameters by comparing high performance cells based on a novel naphtha[1,2‐c:5,6‐c]bis[1,2,5]thiadiazole (NT) material to cells based on a 2,1,3‐benzothiadiazole (BT) analogue. BT‐based devices exhibit ~15 nm, mixed domains that differ in composition by at most 22%, causing substantial bimolecular recombination. In contrast, NT‐based devices have more pure domains that are >80 nm in size, yet the polymer‐rich phase still contains at least 22% fullerene. Power conversion efficiency >6% is achieved for NT devices despite a domain size much larger than the nominal exciton diffusion length due to a favourable trade‐off in the mixed domain between exciton harvesting, charge transport, and bimolecular recombination. The miscibility of the fullerene with the NT and BT polymer is measured and correlated to the purity in devices. Importantly, polarized x‐ray scattering reveals preferential face‐on orientation of the NT polymer relative to the PCBM‐rich domains. Such ordering has previously not been observed in fullerene‐based solar cells and is shown here to be possibly a controlling or contributing factor to high performance.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
An overview of various approaches for the realization of single‐material organic solar cells (SMOCs) is presented. Fullerene‐conjugated systems dyads, di‐block copolymers, and self‐organized donor‐acceptor molecules all represent different possible approaches towards SMOCs. Although each of them presents specific advantages and poses specific problems of design and synthesis, these different routes have witnessed significant progress in the past few years and SMOCs with efficiencies in the range of 1.50% have been realized. These performances are already higher than those of bi‐component bulk heterojunction solar cells some ten years ago, demonstrating that SMOCs can represent a credible approach towards efficient and simple organic solar cells. Possible directions for future research are discussed with the aim of stimulating further research on this exciting topic.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号