首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Flexible and semitransparent organic solar cells (OSCs) have been regarded as the most promising photovoltaic devices for the application of OSCs in wearable energy resources and building‐integrated photovoltaics. Therefore, the flexible and semitransparent OSCs have developed rapidly in recent years through the synergistic efforts in developing novel flexible bottom or top transparent electrodes, designing and synthesizing high performance photoactive layer and low temperature processed electrode buffer layer materials, and device architecture engineering. To date, the highest power conversion efficiencies have reached over 10% of the flexible OSCs and 7.7% with average visible transmittance of 37% for the semitransparent OSCs. Here, a comprehensive overview of recent research progresses and perspectives on the related materials and devices of the flexible and semitransparent OSCs is provided.  相似文献   

3.
4.
5.
Extensive efforts have been devoted during the last decade to organic solar cell research that has led to remarkable progress and achieved power conversion efficiencies (PCEs) in excess of 10%. Among the existing flexible organic solar cells, ultrathin organic solar cells with a total thickness <10 µm have important advantages, including good mechanical bending stabilities and good conformability. These advantages have led to power generation solutions for wearable electronics. In this essay, the progress of flexible and ultrathin organic solar cells, and the future research directions pertaining to these cells are discussed based on the potential applications of textile‐compatible solar cells. Both process engineering and development of the material of ultrathin substrate films have improved the PCE of ultrathin organic solar cells, which in turn have led to the small PCE difference between flexible organic solar cells with substrate thickness >10 µm and ultrathin organic solar cells with substrate thickness ≤10 µm. Key technologies for the further improvement of PCE of flexible/ultrathin organic solar cells are discussed. Strategies to improve the stability and some important aspects, which determine the mechanical robustness of flexible organic solar cells, are also presented and discussed.  相似文献   

6.
A scaling effort on perovskite solar cells is presented where the device manufacture is progressed onto flexible substrates using scalable techniques such as slot‐die roll coating under ambient conditions. The printing of the back electrode using both carbon and silver is essential to the scaling effort. Both normal and inverted device geometries are explored and it is found that the formation of the correct morphology for the perovskite layer depends heavily on the surface upon which it is coated and this has significant implications for manufacture. The time it takes to form the desired layer morphology falls in the range of 5–45 min depending on the perovskite precursor, where the former timescale is compatible with mass production and the latter is best suited for laboratory work. A significant loss in solar cell performance of around 50% is found when progressing to using a fully scalable fabrication process, which is comparable to what is observed for other printable solar cell technologies such as polymer solar cells. The power conversion efficiency (PCE) for devices processed using spin coating on indium tin oxide (ITO)‐glass with evaporated back electrode yields a PCE of 9.4%. The same device type and active area realized using slot‐die coating on flexible ITO‐polyethyleneterphthalate (PET) with a printed back electrode gives a PCE of 4.9%.  相似文献   

7.
8.
9.
Inverted perovskite solar cells (PSCs) with low‐temperature processed hole transporting materials (HTMs) suffer from poor performance due to the inferior hole‐extraction capability at the HTM/perovskite interfaces. Here, molecules with controlled electron affinity enable a HTM with conductivity improved by more than ten times and a decreased energy gap between the Fermi level and the valence band from 0.60 to 0.24 eV, leading to the enhancement of hole‐extraction capacity by five times. As a result, the 3,6‐difluoro‐2,5,7,7,8,8‐hexacyanoquinodimethane molecules are used for the first time enhancing open‐circuit voltage (Voc) and fill factor (FF) of the PSCs, which enable rigid‐and flexible‐based inverted perovskite devices achieving highest power conversion efficiencies of 22.13% and 20.01%, respectively. This new method significantly enhances the Voc and FF of the PSCs, which can be widely combined with HTMs based on not only NiOx but also PTAA, PEDOTT:PSS, and CuSCN, providing a new way of realizing efficient inverted PSCs.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号