首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Adult mammalian stem cells: the role of Wnt, Lgr5 and R-spondins   总被引:1,自引:0,他引:1  
Schuijers J  Clevers H 《The EMBO journal》2012,31(12):2685-2696
After its discovery as oncogen and morphogen, studies on Wnt focused initially on its role in animal development. With the finding that the colorectal tumour suppressor gene APC is a negative regulator of the Wnt pathway in (colorectal) cancer, attention gradually shifted to the study of the role of Wnt signalling in the adult. The first indication that adult Wnt signalling controls stem cells came from a Tcf4 knockout experiment: mutant mice failed to build crypt stem cell compartments. This observation was followed by similar findings in multiple other tissues. Recent studies have indicated that Wnt agonists of the R-spondin family provide potent growth stimuli for crypts in vivo and in vitro. Independently, Lgr5 was found as an exquisite marker for these crypt stem cells. The story has come full circle with the finding that the stem cell marker Lgr5 constitutes the receptor for R-spondins and occurs in complex with Frizzled/Lrp.  相似文献   

4.
The concept of ‘field cancerization’ describes the clonal expansion of genetically altered, but morphologically normal cells that predisposes a tissue to cancer development. Here, we demonstrate that biased stem cell competition in the mouse small intestine can initiate the expansion of such clones. We quantitatively analyze how the activation of oncogenic K-ras in individual Lgr5+ stem cells accelerates their cell division rate and creates a biased drift towards crypt clonality. K-ras mutant crypts then clonally expand within the epithelium through enhanced crypt fission, which distributes the existing Paneth cell niche over the two new crypts. Thus, an unequal competition between wild-type and mutant intestinal stem cells initiates a biased drift that leads to the clonal expansion of crypts carrying oncogenic mutations.  相似文献   

5.
Somatic cells have been proposed to be limited in the number of cell divisions they can undergo. This is thought to be a mechanism by which stem cells retain their integrity preventing disease. However, we have recently discovered intestinal crypt stem cells that persist for the lifetime of a mouse, yet divide every day. We now demonstrate biochemically that primary isolated Lgr5+ve stem cells contain significant telomerase activity. Telomerase activity rapidly decreases in the undifferentiated progeny of these stem cells and is entirely lost in differentiated villus cells. Conversely, asymmetric segregation of chromosomes has been proposed as a mechanism for stem cells to protect their genomes against damage. We determined the average cell cycle length of Lgr5+ve stem cells at 21.5 h and find that Lgr5+ve intestinal stem cells randomly segregate newly synthesized DNA strands, opposing the 'immortal strand' hypothesis.  相似文献   

6.
7.
Progastrin is an unprocessed soluble peptide precursor with a well-described tumor-promoting role in colorectal cancer. It is expressed at small levels in the healthy intestinal mucosa, and its expression is enhanced at early stages of intestinal tumor development, with high levels of this peptide in hyperplastic intestinal polyps being associated with poor neoplasm-free survival in patients. Yet, the precise type of progastrin-producing cells in the healthy intestinal mucosa and in early adenomas remains unclear. Here, we used a combination of immunostaining, RNAscope labelling and retrospective analysis of single cell RNAseq results to demonstrate that progastrin is produced within intestinal crypts by a subset of Bmi1+/Prox1+/LGR5low endocrine cells, previously shown to act as replacement stem cells in case of mucosal injury. In contrast, our findings indicate that intestinal stem cells, specified by expression of the Wnt signaling target LGR5, become the main source of progastrin production in early mouse and human intestinal adenomas. Collectively our results suggest that the previously identified feed-forward mechanisms between progastrin and Wnt signaling is a hallmark of early neoplastic transformation in mouse and human colonic adenomas.  相似文献   

8.
Current knowledge indicates that the adult mammalian retina lacks regenerative capacity. Here, we show that the adult stem cell marker, leucine‐rich repeat‐containing G‐protein‐coupled receptor 5 (Lgr5), is expressed in the retina of adult mice. Lgr5+ cells are generated at late stages of retinal development and exhibit properties of differentiated amacrine interneurons (amacrine cells). Nevertheless, Lgr5+ amacrine cells contribute to regeneration of new retinal cells in the adult stage. The generation of new retinal cells, including retinal neurons and Müller glia from Lgr5+ amacrine cells, begins in early adulthood and continues as the animal ages. Together, these findings suggest that the mammalian retina is not devoid of regeneration as previously thought. It is rather dynamic, and Lgr5+ amacrine cells function as an endogenous regenerative source. The identification of such cells in the mammalian retina may provide new insights into neuronal regeneration and point to therapeutic opportunities for age‐related retinal degenerative diseases.  相似文献   

9.
10.
Helicobacter pylori is a pathogen that colonizes the stomach and causes chronic gastritis. Helicobacter pylori can colonize deep inside gastric glands, triggering increased R‐spondin 3 (Rspo3) signaling. This causes an expansion of the “gland base module,” which consists of self‐renewing stem cells and antimicrobial secretory cells and results in gland hyperplasia. The contribution of Rspo3 receptors Lgr4 and Lgr5 is not well explored. Here, we identified that Lgr4 regulates Lgr5 expression and is required for H. pylori‐induced hyperplasia and inflammation, while Lgr5 alone is not. Using conditional knockout mice, we reveal that R‐spondin signaling via Lgr4 drives proliferation of stem cells and also induces NF‐κB activity in the proliferative stem cells. Upon exposure to H. pylori, the Lgr4‐driven NF‐κB activation is responsible for the expansion of the gland base module and simultaneously enables chemokine expression in stem cells, resulting in gland hyperplasia and neutrophil recruitment. This demonstrates a connection between R‐spondin‐Lgr and NF‐κB signaling that links epithelial stem cell behavior and inflammatory responses to gland‐invading H. pylori.  相似文献   

11.
Aging impairs the functions of human mesenchymal stem cells (MSCs), thereby severely reducing their beneficial effects on myocardial infarction (MI). MicroRNAs (miRNAs) play crucial roles in regulating the senescence of MSCs; however, the underlying mechanisms remain unclear. Here, we investigated the significance of miR‐155‐5p in regulating MSC senescence and whether inhibition of miR‐155‐5p could rejuvenate aged MSCs (AMSCs) to enhance their therapeutic efficacy for MI. Young MSCs (YMSCs) and AMSCs were isolated from young and aged donors, respectively. The cellular senescence of MSCs was evaluated by senescence‐associated β‐galactosidase (SA‐β‐gal) staining. Compared with YMSCs, AMSCs exhibited increased cellular senescence as evidenced by increased SA‐β‐gal activity and decreased proliferative capacity and paracrine effects. The expression of miR‐155‐5p was much higher in both serum and MSCs from aged donors than young donors. Upregulation of miR‐155‐5p in YMSCs led to increased cellular senescence, whereas downregulation of miR‐155‐5p decreased AMSC senescence. Mechanistically, miR‐155‐5p inhibited mitochondrial fission and increased mitochondrial fusion in MSCs via the AMPK signaling pathway, thereby resulting in cellular senescence by repressing the expression of Cab39. These effects were partially reversed by treatment with AMPK activator or mitofusin2‐specific siRNA (Mfn2‐siRNA). By enhancing angiogenesis and promoting cell survival, transplantation of anti‐miR‐155‐5p‐AMSCs led to improved cardiac function in an aged mouse model of MI compared with transplantation of AMSCs. In summary, our study shows that miR‐155‐5p mediates MSC senescence by regulating the Cab39/AMPK signaling pathway and miR‐155‐5p is a novel target to rejuvenate AMSCs and enhance their cardioprotective effects.  相似文献   

12.
13.
14.
Adipose‐derived stem cells (ASC) are said to have a pivotal role in wound healing. Specifically, ASC‐secreted extracellular vesicles (EV) carry diverse cargos such as microRNAs (miRNAs) to participate in the ASC‐based therapies. Considering its effects, we aimed to investigate the role of ASC‐EVs in the cutaneous wound healing accompanied with the study on the specific cargo‐medicated effects on wound healing. Two full‐thickness excisional skin wounds were created on mouse dorsum, and wound healing was recorded at the indicated time points followed by histological analysis and immunofluorescence staining for CD31 and α‐SMA. Human skin fibroblasts (HSFs) and human microvascular endothelial cells (HMECs) were co‐cultured with EVs isolated from ASC (ASC‐EVs), respectively, followed by the evaluation of their viability and mobility using CCK‐8, scratch test and transwell migration assays. Matrigel‐based angiogenesis assays were performed to evaluate vessel‐like tube formation by HMECs in vitro. ASC‐EVs accelerated the healing of full‐thickness skin wounds, increased re‐epithelialization and reduced scar thickness whilst enhanced collagen synthesis and angiogenesis in murine models. However, miR‐486‐5p antagomir abrogated the ASC‐EVs‐induced effects. Intriguingly, miR‐486‐5p was found to be highly enriched in ASC‐EVs, exhibiting an increase in viability and mobility of HSFs and HMECs and enhanced the angiogenic activities of HMECs. Notably, we also demonstrated that ASC‐EVs‐secreted miR‐486‐5p achieved the aforesaid effects through its target gene Sp5. Hence, our results suggest that miR‐486‐5p released by ASC‐EVs could be a critical mediator to develop an ASC‐based therapeutic strategy for wound healing.  相似文献   

15.
Glioma is the most common brain tumor malignancy with high mortality and poor prognosis. Emerging evidence suggests that cancer stem cells are the key culprit in the development of cancer. MicroRNAs have been reported to be dysregulated in many cancers, while the mechanism underlying miR‐150‐5p in glioma progression and proportion of stem cells is unclear. The expression levels of miR‐150‐5p and catenin beta 1 (CTNNB1, which encodes β‐catenin) were measured by quantitative real‐time polymerase chain reaction (qRT‐PCR) and western blot. The expression levels of downstream genes of the Wnt/β‐catenin pathway and stem cell markers were detected by qRT‐PCR. Tumorigenesis was investigated by cell viability, colony formation, and tumor growth in vitro and in vivo. The interaction between miR‐150‐5p and β‐catenin was explored via bioinformatics analysis and luciferase activity assay. We found that miR‐150‐5p was downregulated in glioma and its overexpression inhibited cell proliferation, colony formation, and tumor growth. Moreover, miR‐150‐5p directly suppressed CTNNB1 and negatively regulated the abundances of downstream genes of the Wnt/β‐catenin pathway and stem cell markers. Furthermore, miR‐150‐5p expression was decreased and β‐catenin level was enhanced in CD133+ glioma stem cells. Knockdown of miR‐150‐5p contributed to CD133? cells with stem cell‐like phenotype, whereas overexpression of miR‐150‐5p suppressed CD133+ glioma stem cell‐like characteristics. In conclusion, miR‐150‐5p inhibited the progression of glioma by controlling stem cell‐like characteristics via regulating the Wnt/β‐catenin pathway, providing a novel target for glioma treatment.  相似文献   

16.
17.
Current clinical protocols used for isolation and purification of mesenchymal stem cells (MSC) are based on long-term cultures starting with bone marrow (BM) mononuclear cells. Using a commercially available immunoselection kit for enrichment of MSC, we investigated whether culture of enriched BM-CD105+ cells could provide an adequate number of pure MSC in a short time for clinical use in the context of graft versus host disease and graft failure/rejection. We isolated a mean of 5.4 × 105 ± 0.9 × 105 CD105+ cells from 10 small volume (10–25 ml) BM samples achieving an enrichment >100-fold in MSC. Seeding 2 × 103 immunoselected cells/cm2 we were able to produce 2.5 × 108 ± 0.7 × 108 MSC from cultures with autologous serum enriched medium within 3 weeks. Neither haematopoietic nor endothelial cells were detectable even in the primary culture cell product. Expanded cells fulfilled both phenotypic and functional current criteria for MSC; they were CD29+, CD90+, CD73+, CD105+, CD45; they suppressed allogeneic T-cell reaction in mixed lymphocyte cultures and retained in vitro differentiation potential. Moreover, comparative genomic hybridization analysis revealed chromosomal stability of the cultured MSC. Our data indicate that adequate numbers of pure MSC suitable for clinical applications can be generated within a short time using enriched BM-CD105+ cells.  相似文献   

18.
19.
20.
Extracellular ATP through the activation of the P2X and P2Y purinergic receptors affects the migration, proliferation and differentiation of many types of cells, including stem cells. High plasticity, low immunogenicity and immunomodulation ability of mesenchymal stem cells derived from human endometrium (eMSCs) allow them to be considered a prominent tool for regenerative medicine. Here, we examined the role of ATP in the proliferation and migration of human eMSCs. Using a wound healing assay, we showed that ATP‐induced activation of purinergic receptors suppressed the migration ability of eMSCs. We found the expression of one of the ATP receptors, the P2X7 receptor in eMSCs. In spite of this, cell activation with specific P2X7 receptor agonist, BzATP did not significantly affect the cell migration. The allosteric P2X7 receptor inhibitor, AZ10606120 also did not prevent ATP‐induced inhibition of cell migration, confirming that inhibition occurs without P2X7 receptor involvement. Flow cytometry analysis showed that high concentrations of ATP did not have a cytotoxic effect on eMSCs. At the same time, ATP induced the cell cycle arrest, suppressed the proliferative and migration capacity of eMSCs and therefore could affect the regenerative potential of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号