首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
NiOx hole transporting layer has been extensively studied in optoelectronic devices. In this paper, the low temperature, solution–combustion‐based method is employed to prepare the NiOx hole transporting layer. The resulting NiOx thin films show better quality and preferable energy alignment with perovskite thin film compared to high temperature sol–gel‐processed NiOx. With this, high‐performance perovskite solar cells are fabricated successfully with power conversion efficiency exceeding 20% using a modified two‐step prepared MA1?yFAyPbI3?xClx perovskite. This efficiency value is among the highest values for NiOx‐based devices. Various characterizations and analyses provide evidence of better film quality, enhanced charge transport and extraction, and suppressed charge recombination. Meanwhile, the device exhibits much better device stability compared to sol–gel‐processed NiOx and poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)‐based devices.  相似文献   

2.
We show enhanced efficiency and stability of a high performance organic solar cell (OPV) when the work‐function of the hole collecting indium‐tin oxide (ITO) contact, modified with a solution‐processed nickel oxide (NiOx) hole‐transport layer (HTL), is matched to the ionization potential of the donor material in a bulk‐heterojunction solar cell. Addition of the NiOx HTL to the hole collecting contact results in a power conversion efficiency (PCE) of 6.7%, which is a 17.3% net increase in performance over the 5.7% PCE achieved with a poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL on ITO. The impact of these NiOx films is evaluated through optical and electronic measurements as well as device modeling. The valence and conduction band energies for the NiOx HTL are characterized in detail through photoelectron spectroscopy studies while spectroscopic ellipsometry is used to characterize the optical properties. Oxygen plasma treatment of the NiOx HTL is shown to provide superior contact properties by increasing the ITO/NiOx contact work‐function by 500 meV. Enhancement of device performance is attributed to reduction of the band edge energy offset at the ITO/NiOx interface with the poly(N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothidiazole) (PCDTBT):[6,6]‐phenyl‐C61 butyric acid methyl ester PCBM and [6,6]‐phenyl‐C71 butyric acid methyl ester (PC70BM) active layer. A high work‐function hole collecting contact is therefore the appropriate choice for high ionization potential donor materials in order to maximize OPV performance.  相似文献   

3.
High‐quality charge carrier transport materials are of key importance for stable and efficient perovskite‐based photovoltaics. This work reports on electron‐beam‐evaporated nickel oxide (NiOx) layers, resulting in stable power conversion efficiencies (PCEs) of up to 18.5% when integrated into solar cells employing inkjet‐printed perovskite absorbers. By adding oxygen as a process gas and optimizing the layer thickness, transparent and efficient NiOx hole transport layers (HTLs) are fabricated, exhibiting an average absorptance of only 1%. The versatility of the material is demonstrated for different absorber compositions and deposition techniques. As another highlight of this work, all‐evaporated perovskite solar cells employing an inorganic NiOx HTL are presented, achieving stable PCEs of up to 15.4%. Along with good PCEs, devices with electron‐beam‐evaporated NiOx show improved stability under realistic operating conditions with negligible degradation after 40 h of maximum power point tracking at 75 °C. Additionally, a strong improvement in device stability under ultraviolet radiation is found if compared to conventional perovskite solar cell architectures employing other metal oxide charge transport layers (e.g., titanium dioxide). Finally, an all‐evaporated perovskite solar mini‐module with a NiOx HTL is presented, reaching a PCE of 12.4% on an active device area of 2.3 cm2.  相似文献   

4.
All‐inorganic cesium lead halide (CsPbX3) perovskites have emerged as promising photovoltaic materials owing to their superior thermal stability compared to traditional organic–inorganic hybrid counterparts. However, the CsPbX3 perovskites generally need to be prepared at high‐temperature, which restricts their application in multilayer or flexible solar cells. Herein, the formation of CsPbX3 perovskites at room‐temperature (RT) induced by dimethylsulphoxide (DMSO) coordination is reported. It is further found that a RT solvent (DMSO) annealing (RTSA) treatment is valid to control the perovskite crystallization dynamics, leading to uniform and void‐free films, and consequently a maximum power conversion efficiency (PCE) of 6.4% in the device indium tin oxide (ITO)/NiO x /RT‐CsPbI2Br/C60/Bathocuproine (BCP)/Ag, which is, as far as it is known, the first report of RT solution‐processed CsPbX3‐based perovskite solar cells (PSCs). Moreover, the efficiency can be boosted up to 10.4% by postannealing the RTSA‐treated perovskite film at an optimal temperature of 120 °C. Profiting from the moderate temperature, flexible PSCs are also demonstrated with a maximum PCE of 7.3% for the first time. These results may stimulate further development of all‐inorganic CsPbX3 perovskites and their application in flexible electronics.  相似文献   

5.
Organic–inorganic halide perovskite solar cells (PSCs) have emerged as attractive alternatives to conventional solar cells. It is still a challenge to obtain PSCs with good thermal stability and high permanence, especially at extreme outdoor temperatures. This work systematically studies the effects of Bi3+ modification on structural, electrical, and optical properties of perovskite films (FA0.83MA0.17Pb(I0.83Br0.17)3) and the performance of corresponding PSCs. The results indicate that Bi3+ modified PSCs can achieve better thermal stability, photovoltaic response, and reproducibility compared with control cells due to the decreased grain boundaries, enhanced crystallization, and improved electron extraction from perovskite film. As a result, the modified PSC exhibits an optimized power conversion efficiency (PCE) of 19.4% compared with 18.3% for the optimized control device, accompanied by better thermoresistant ability under 100–180 °C and enhanced long‐term stability. The degradation rate of the modified device is reduced by an order of magnitude due to effective structural defect modification in perovskite photoactive layer. It could maintain more than two months at 60 °C. These results shed light on the origin of crystallization and thermal stability of perovskite films, and provide an approach to solve thermal stability issue of PSCs.  相似文献   

6.
Herein, a novel and effective method to prepare n‐doped MoOx films with highly improved conductivity is reported. The MoOx films are readily prepared by spin‐coating an aqueous solution containing ammonium molybdate tetrahydrate and vitamin C (VC). As confirmed by UV–vis absorption, X‐ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy measurements, Mo(VI) is partially reduced to Mo(V) by VC, resulting in the n‐doping of MoOx. The conductivity of the n‐doped MoOx (H:V‐Mo) film can be enhanced by four orders of magnitude compared to pristine MoOx (H‐Mo), that is, from 1.2 × 10−7 to 1.1 × 10−3 S m−1. The device using a 10 nm H:V‐Mo anode interlayer (AIL) exhibits comparable photovoltaic performance to a poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)‐modified device. More importantly, the hole transport and collection properties of the H:V‐Mo AILs show outstanding tolerance to thickness variation, that is, with increasing thickness of the H:V‐Mo AIL from 10 to 150 nm, the V oc and fill factor values of the devices remain unchanged. The device based on the blade‐coated H:V‐Mo AIL also has a high power conversion efficiency of 10.6%. To the best of the authors' knowledge, this work demonstrates the first example to prepare metal oxide AILs with outstanding tolerance to thickness, which is promising for the future large‐area manufacturing.  相似文献   

7.
Organometal halide perovskites have powerful intrinsic potential to drive next‐generation solar technology, but their insufficient thermomechanical reliability and unproven large‐area manufacturability limit competition with incumbent silicon photovoltaics. This work addresses these limitations by leveraging large‐area processing and robust inorganic hole transport layers (HTLs). Inverted perovskite solar cells utilizing NiOx HTLs deposited by rapid aqueous spray‐coating that outperform spin‐coated NiOx and lead to a 5× improvement in the fracture energy (Gc), a primary metric of thermomechanical stability, are presented. The morphology, chemical composition, and optoelectronic properties of the NiOx films are characterized to understand and optimize compatibility with an archetypal double cation perovskite, Cs.17FA.83Pb(Br.17I.83)3. Perovskite solar cells with sprayed NiOx show higher photovoltaic performance, exhibiting up to 82% fill factor and 17.7% power conversion efficiency (PCE)—the highest PCE reported for inverted cell with scalable charge transport layers—as well as excellent stability under full illumination and after 4000 h aging in inert conditions at room temperature. By utilizing open‐air techniques and aqueous precursors, this combination of robust materials and low‐cost processing provides a platform for scaling perovskite modules with long‐term reliability.  相似文献   

8.
It is demonstrated that a combination of microsecond transient photocurrent measurements and film morphology characterization can be used to identify a charge‐carrier blocking layer within polymer:fullerene bulk‐heterojunction solar cells. Solution‐processed molybdenum oxide (s‐MoOx) interlayers are used to control the morphology of the bulk‐heterojunction. By selecting either a low‐ or high‐temperature annealing (70 °C or 150 °C) for the s‐MoOx layer, a well‐performing device is fabricated with an ideally interconnected, high‐efficiency morphology, or a device is fabricated in which the fullerene phase segregates near the hole extracting contact preventing efficient charge extraction. By probing the photocurrent dynamics of these two contrasting model systems as a function of excitation voltage and light intensity, the optoelectronic responses of the solar cells are correlated with the vertical phase composition of the polymer:fullerene active layer, which is known from dynamic secondary‐ion mass spectroscopy (DSIMS). Numerical simulations are used to verify and understand the experimental results. The result is a method to detect poor morphologies in operating organic solar cells.  相似文献   

9.
Organic–inorganic hybrid perovskite solar cells have resulted in tremendous interest in developing next generation photovoltaics due to high record efficiency exceeding 22%. For inverted structure perovskite solar cells, the hole extraction layers play a significant role in achieving efficient and stable perovskite solar cell by modifying charge extraction, interfacial recombination losses, and band alignment. Here, cesium doped NiOx is selected as a hole extraction layer to study the impact of Cs dopant on the optoelectronic properties of NiOx and the photovoltaic performance. Cs doped NiOx films are prepared by a simple solution‐based method. Both doped and undoped NiOx films are smooth and highly transparent, while the Cs doped NiOx exhibits better electron conductivity and higher work function. Therefore, Cs doping results in a significant improvement in the performance of NiOx‐based inverted planar perovskite solar cells. The best efficiency of Cs doped NiOx devices is 19.35%, and those devices show high stability as well. The improved efficiency in devices with Cs:NiOx is attributed to a significant improvement in the hole extraction and better band alignment compared to undoped NiOx. This work reveals that Cs doped NiOx is very promising hole extraction material for high and stable inverted perovskite solar cells.  相似文献   

10.
The performance of perovskite solar cells (PSCs) relies on the synthesis method and chemical composition of the perovskite materials. So far, PSCs that have adopted two‐step sequential deposited perovskite with the state‐of‐art composition (FAPbI3)1?x(MAPbBr3)x (x < 0.05) have achieved record power conversion efficiency (PCE), while their one‐step antisolvent dripping counterparts with typical composition Cs0.05FA0.81MA0.14Pb(I0.85Br0.15)3 with more bromine have exhibited much better long‐term operational stability. Thus, halogen engineering that aims to elevate bromine content in sequential deposited perovskite film would push operational stability of PSCs toward that of antisolvent dripping deposited perovskite materials. Here, a Br‐rich seeding growth method is devised and perovskite seed solution with high bromine content is introduced into a PbI2 precursor, leading to bromine incorporation in the resulting perovskite film. Photovoltaic devices fabricated by Br‐rich seeding growth method exhibit a PCE of 21.5%, similar to 21.6% for PSCs having lower bromine content. Whereas, the operational stability of PSCs with higher bromine content is significantly enhanced, with over 80% of initial PCE retained after 500 h tracking at maximum power point under 1‐sun illumination. This work highlights the vital importance of halogen composition for the operational stability of PSCs, and introduces an effective way to incorporate bromine into mixed‐cation‐halide perovskite film via sequential deposition method.  相似文献   

11.
Organic–inorganic hybrid perovskite solar cells (PVSCs) have become the front‐running photovoltaic technology nowadays and are expected to profoundly impact society in the near future. However, their practical applications are currently hampered by the challenges of realizing high performance and long‐term stability simultaneously. Herein, the development of inverted PVSCs is reported based on low temperature solution‐processed CuCrO2 nanocrystals as a hole‐transporting layer (HTL), to replace the extensively studied NiOx counterpart due to its suitable electronic structure and charge carrier transporting properties. A ≈45 nm thick compact CuCrO2 layer is incorporated into an inverted planar configuration of indium tin oxides (ITO)/c‐CuCrO2/perovskite/[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM)/bathocuproine (BCP)/Ag, to result in the high steady‐state power conversion efficiency of 19.0% versus 17.1% for the typical low temperature solution‐processed NiOx‐based devices. More importantly, the optimized CuCrO2‐based device exhibits a much enhanced photostability than the reference device due to the greater UV light‐harvesting of the CuCrO2 layer, which can efficiently prevent the perovskite film from intense UV light exposure to avoid associated degradation. The results demonstrate the promising potential of CuCrO2 nanocrystals as an efficient HTL for realizing high‐performance and photostable inverted PVSCs.  相似文献   

12.
The high thermal stability and facile synthesis of CsPbI2Br all‐inorganic perovskite solar cells (AI‐PSCs) have attracted tremendous attention. As far as electron‐transporting layers (ETLs) are concerned, low temperature processing and reduced interfacial recombination centers through tunable energy levels determine the feasibility of the perovskite devices. Although the TiO2 is the most popular ETL used in PSCs, its processing temperature and moderate electron mobility hamper the performance and feasibility. Herein, the highly stable, low‐temperature processed MgZnO nanocrystal‐based ETLs for dynamic hot‐air processed Mn2+ incorporated CsPbI2Br AI‐PSCs are reported. By holding its regular planar “n–i–p” type device architecture, the MgZnO ETL and poly(3‐hexylthiophene‐2,5‐diyl) hole transporting layer, 15.52% power conversion efficiency (PCE) is demonstrated. The thermal‐stability analysis reveals that the conventional ZnO ETL‐based AI‐PSCs show a serious instability and poor efficiency than the Mg2+ modified MgZnO ETLs. The photovoltaic and stability analysis of this improved photovoltaic performance is attributed to the suitable wide‐bandgap, low ETL/perovskite interface recombination, and interface stability by Mg2+ doping. Interestingly, the thermal stability analysis of the unencapsulated AI‐PSCs maintains >95% of initial PCE more than 400 h at 85 °C for MgZnO ETL, revealing the suitability against thermal degradation than conventional ZnO ETL.  相似文献   

13.
To solve critical issues related to device stability and performance of perovskite solar cells (PSCs), FA0.026MA0.974PbI3?yCly‐Cu:NiO (formamidinium methylammonium (FAMA)‐perovskite‐Cu:NiO) and Al2O3/Cu:NiO composites are developed and utilized for fabrication of highly stable and efficient PSCs through fully‐ambient‐air processes. The FAMA‐perovskite‐Cu:NiO composite crystals prepared without using any antisolvents not only improve the perovskite film quality with large‐size crystals and less grain boundaries but also tailor optical and electronic properties and suppress charge recombination with reduction of trap density. A champion device based on the composites as light absorber and Al2O3/Cu:NiO interfacial layer between electron transport layer and active layer yields power conversion efficiency (PCE) of 20.67% with VOC of 1.047 V, JSC of 24.51 mA cm?2, and fill factor of 80.54%. More importantly, such composite‐based PSCs without encapsulation show significant enhancement in long‐term air‐stability, thermal‐ and photostability with retaining 97% of PCE over 240 d under ambient conditions (25–30 °C, 45–55% humidity).  相似文献   

14.
Photovoltaic performance of polymer solar cells based on poly(3‐hexylthiophene) (P3HT) as the donor and indene‐C70 bisadduct (IC70BA) as the acceptor is improved by adding 3 vol% 3‐methylthiophene (MT) or 3‐hexylthiophene (HT) as processing additives. The results of UV‐vis absorption spectroscopy, X‐ray diffraction analysis and atomic force microscopy indicate that with the MT or HT processing additive, the active layer of the blend of P3HT/IC70BA showed strengthened absorbance, enhanced crystallinity and improved film morphology. The power conversion efficiency (PCE) of the PSCs was improved from 5.80% for the device without the additive to 6.35% for the device with HT additive and to 6.69% with MT additive. The PCE of 6.69% is the top value reported so far for the PSCs based on P3HT.  相似文献   

15.
Recent research on fabricating scaffold‐type perovskite solar cells on plastic substrates has reported noteworthy progress in replacing the high‐temperature processing of TiO2 scaffolds and compact layers with various low‐temperature processes. Herein, recent progress in the laboratory is reported regarding the development of electrodeposited TiOx compact layers and brookite TiO2 scaffolds, both of which can be processed under 150 °C without greatly sacrificing their photovoltaic performance. Through systematic characterization of device properties and careful optimization of the fabrication conditions, a record‐high 15.76% power conversion efficiency of a plastic TiO2 scaffold‐type perovskite solar cell is demonstrated. In addition, bending durability and preliminary stability tests on this plastic perovskite solar cell show promising results and indicate clear directions for future improvement.  相似文献   

16.
Inverted perovskite solar cells (PSCs) with low‐temperature processed hole transporting materials (HTMs) suffer from poor performance due to the inferior hole‐extraction capability at the HTM/perovskite interfaces. Here, molecules with controlled electron affinity enable a HTM with conductivity improved by more than ten times and a decreased energy gap between the Fermi level and the valence band from 0.60 to 0.24 eV, leading to the enhancement of hole‐extraction capacity by five times. As a result, the 3,6‐difluoro‐2,5,7,7,8,8‐hexacyanoquinodimethane molecules are used for the first time enhancing open‐circuit voltage (Voc) and fill factor (FF) of the PSCs, which enable rigid‐and flexible‐based inverted perovskite devices achieving highest power conversion efficiencies of 22.13% and 20.01%, respectively. This new method significantly enhances the Voc and FF of the PSCs, which can be widely combined with HTMs based on not only NiOx but also PTAA, PEDOTT:PSS, and CuSCN, providing a new way of realizing efficient inverted PSCs.  相似文献   

17.
Two novel narrow bandgap π‐conjugated polymers based on naphtho[1,2‐c:5,6‐c′]bis([1,2,5]thiadiazole) (NT) unit are developed, which contain the thiophene or benzodithiophene flanked with alkylthiophene as the electron‐donating segment. Both copolymers exhibit strong aggregations both in solution and as thin films. The resulting copolymers with higher molecular weight show higher photovoltaic performance by virtue of the enhanced short‐circuit current densities and fill factors, which can be attributed to their higher absorptivity and formation of more favorable film morphologies. Polymer solar cells (PSCs) fabricated with the copolymer PNTT achieve remarkable power conversion efficiencies (PCEs) > 11% based on both conventional and inverted structures at the photoactive layer thickness of 280 nm, which is the highest value so far observed from NT‐based copolymers. Of particular interest is that the device performances are insensitive to the thickness of the photoactive layer, for which the PCEs > 10% can be achieved with film thickness ranging from 150 to 660 nm, and the PCE remains >9% at the thickness over 1 µm. These findings demonstrate that these NT‐based copolymers can be promising candidates for the construction of thick film PSCs toward low‐cost roll‐to‐roll processing technology.  相似文献   

18.
Significantly increased power conversion efficiency (PCE) of polymer solar cells (PSCs) is achieved by applying a plasmonic enhanced light trapping strategy to a low bandgap conjugated polymer, poly(indacenodithiophene‐ co‐phananthrene‐quinoxaline) (PIDT‐PhanQ) and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) based bulk‐heterojunction (BHJ) system. By doping both the rear and front charge‐selecting interfacial layers of the device with different sizes of Au NPs, the PCE of the devices is improved from 6.65% to 7.50% (13% enhancement). A detailed study of processing, characterization, microscopy, and device fabrication is conducted to understand the underlying mechanism for the enhanced device performance. The success of this work provides a simple and generally applicable approach to enhance light harnessing of low bandgap polymers in PSCs.  相似文献   

19.
To realize high power conversion efficiencies (PCEs) in green‐solvent‐processed all‐polymer solar cells (All‐PSCs), a long alkyl chain modified perylene diimide (PDI)‐based polymer acceptor PPDIODT with superior solubility in nonhalogenated solvents is synthesized. A properly matched PBDT‐TS1 is selected as the polymer donor due to the red‐shifted light absorption and low‐lying energy level in order to achieve the complementary absorption spectrum and matched energy level between polymer donor and polymer acceptor. By utilizing anisole as the processing solvent, an optimal efficiency of 5.43% is realized in PBDT‐TS1/PPDIODT‐based All‐PSC with conventional configuration, which is comparable with that of All‐PSCs processed by the widely used binary solvent. Due to the utilization of an inverted device configuration, the PCE is further increased to over 6.5% efficiency. Notably, the best‐performing PCE of 6.58% is the highest value for All‐PSCs employing PDI‐based polymer acceptors and green‐solvent‐processed All‐PSCs. The excellent photovoltaic performance is mainly attributed to a favorable vertical phase distribution, a higher exciton dissociation efficiency (Pdiss) in the blend film, and a higher electrode carrier collection efficiency. Overall, the combination of rational molecular designing, material selection, and device engineering will motivate the efficiency breakthrough in green‐solvent‐processed All‐PSCs.  相似文献   

20.
In very recent years, growing efforts have been devoted to the development of all‐polymer solar cells (all‐PSCs). One of the advantages of all‐PSCs over the fullerene‐based PSCs is the versatile design of both donor and acceptor polymers which allows the optimization of energy levels to maximize the open‐circuit voltage (Voc). However, there is no successful example of all‐PSCs with both high Voc over 1 V and high power conversion efficiency (PCE) up to 8% reported so far. In this work, a combination of a donor polymer poly[4,8‐bis(5‐(2‐octylthio)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(5‐(2‐ethylhexyl)‐4H‐thieno[3,4‐c]pyrrole‐4,6(5H)‐dione)‐1,3‐diyl] (PBDTS‐TPD) with a low‐lying highest occupied molecular orbital level and an acceptor polymer poly[[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐thiophene‐2,5‐diyl] (PNDI‐T) with a high‐lying lowest unoccupied molecular orbital level is used, realizing high‐performance all‐PSCs with simultaneously high Voc of 1.1 V and high PCE of 8.0%, and surpassing the performance of the corresponding PC71BM‐based PSCs. The PBDTS‐TPD:PNDI‐T all‐PSCs achieve a maximum internal quantum efficiency of 95% at 450 nm, which reveals that almost all the absorbed photons can be converted into free charges and collected by electrodes. This work demonstrates the advantages of all‐PSCs by incorporating proper donor and acceptor polymers to boost both Voc and PCEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号