首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Bioengineering of photoautotrophic microalgae into CO2 scrubbers and producers of value‐added metabolites is an appealing approach in low‐carbon economy. A strategy for microalgal bioengineering is to enhance the photosynthetic carbon assimilation through genetically modifying the photosynthetic pathways. The halotolerant microalgae Dunaliella posses an unique osmoregulatory mechanism, which accumulates intracellular glycerol in response to extracellular hyperosmotic stresses. In our study, the Calvin cycle enzyme sedoheptulose 1,7‐bisphosphatase from Chlamydomonas reinhardtii (CrSBPase) was transformed into Dunaliella bardawil, and the transformant CrSBP showed improved photosynthetic performance along with increased total organic carbon content and the osmoticum glycerol production. The results demonstrate that the potential of photosynthetic microalgae as CO2 removers could be enhanced through modifying the photosynthetic carbon reduction cycle, with glycerol as the carbon sink.  相似文献   

3.
Screening of commercially available fluoro monosaccharides as putative growth inhibitors in Arabidopsis thaliana revealed that 2‐fluoro 2‐l ‐fucose (2F‐Fuc) reduces root growth at micromolar concentrations. The inability of 2F‐Fuc to affect an Atfkgp mutant that is defective in the fucose salvage pathway indicates that 2F‐Fuc must be converted to its cognate GDP nucleotide sugar in order to inhibit root growth. Chemical analysis of cell wall polysaccharides and glycoproteins demonstrated that fucosylation of xyloglucans and of N‐linked glycans is fully inhibited by 10 μm 2F‐Fuc in Arabidopsis seedling roots, but genetic evidence indicates that these alterations are not responsible for the inhibition of root development by 2F‐Fuc. Inhibition of fucosylation of cell wall polysaccharides also affected pectic rhamnogalacturonan‐II (RG‐II). At low concentrations, 2F‐Fuc induced a decrease in RG‐II dimerization. Both RG‐II dimerization and root growth were partially restored in 2F‐Fuc‐treated seedlings by addition of boric acid, suggesting that the growth phenotype caused by 2F‐Fuc was due to a deficiency of RG‐II dimerization. Closer investigation of the 2F‐Fuc‐induced growth phenotype demonstrated that cell division is not affected by 2F‐Fuc treatments. In contrast, the inhibitor suppressed elongation of root cells and promoted the emergence of adventitious roots. This study further emphasizes the importance of RG‐II in cell elongation and the utility of glycosyltransferase inhibitors as new tools for studying the functions of cell wall polysaccharides in plant development. Moreover, supplementation experiments with borate suggest that the function of boron in plants might not be restricted to RG‐II cross‐linking, but that it might also be a signal molecule in the cell wall integrity‐sensing mechanism.  相似文献   

4.
Gibberellins (GAs) play a critical role in fruit‐set and fruit growth. Gibberellin is perceived by its nuclear receptors GA INSENSITIVE DWARF1s (GID1s), which then trigger degradation of downstream repressors DELLAs. To understand the role of the three GA receptor genes (GID1A, GID1B and GID1C) in Arabidopsis during fruit initiation, we have examined their temporal and spatial localization, in combination with analysis of mutant phenotypes. Distinct expression patterns are revealed for each GID1: GID1A is expressed throughout the whole pistil, while GID1B is expressed in ovules, and GID1C is expressed in valves. Functional study of gid1 mutant combinations confirms that GID1A plays a major role during fruit‐set and growth, whereas GID1B and GID1C have specific roles in seed development and pod elongation, respectively. Therefore, in ovules, GA perception is mediated by GID1A and GID1B, while GID1A and GID1C are involved in GA perception in valves. To identify tissue‐specific interactions between GID1s and DELLAs, we analyzed spatial expression patterns of four DELLA genes that have a role in fruit initiation (GAI, RGA, RGL1 and RGL2). Our data suggest that GID1A can interact with RGA and GAI in all tissues, whereas GID1C–RGL1 and GID1B–RGL2 interactions only occur in valves and ovules, respectively. These results uncover specific functions of each GID1–DELLA in the different GA‐dependent processes that occur upon fruit‐set. In addition, the distribution of GA receptors in valves along with lack of expression of GA biosynthesis genes in this tissue, strongly suggests transport of GAs from the developing seeds to promote fruit growth.  相似文献   

5.
Cytotoxic T lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 (PD‐1) are immune checkpoint proteins expressed in T cells. Although CTLA4 expression was found in multiple tumours including non‐small cell lung cancer (NSCLC) tissues and cells, its function in tumour cells is unknown. Recently, PD‐1 was found to be expressed in melanoma cells and to promote tumorigenesis. We found that CTLA4 was expressed in a subset of NSCLC cell lines and in a subgroup of cancer cells within the lung cancer tissues. We further found that in NSCLC cells, anti‐CTLA4 antibody can induce PD‐L1 expression, which is mediated by CTLA4 and the EGFR pathway involving phosphorylation of MEK and ERK. In CTLA4 knockout cells, EGFR knockout cells or in the presence of an EGFR tyrosine kinase inhibitor, anti‐CTLA4 antibody was not able to induce PD‐L1 expression in NSCLC cells. Moreover, anti‐CTLA4 antibody promoted NSCLC cell proliferation in vitro and tumour growth in vivo in the absence of adaptive immunity. These results suggest that tumour cell‐intrinsic CTLA4 can regulate PD‐L1 expression and cell proliferation, and that anti‐CTLA4 antibody, by binding to the tumour cell‐intrinsic CTLA4, may result in the activation of the EGFR pathway in cancer cells.  相似文献   

6.
7.
Thyroid cancer (TC) is a prevalent endocrine malignant cancer whose pathogenic mechanism remains unclear. The aim of the study was to investigate the roles of long non‐coding RNA (lncRNA) NR2F1‐AS1/miRNA‐338‐3P/CCND1 axis in TC progression. Differentially expressed lncRNAs and mRNAs in TC tissues were screened out and visualized by R program. Relative expression of NR2F1‐AS1, miRNA‐338‐3p and cyclin D1 (CCND1) was determined by quantitative real time polymerase chain reaction. In addition, Western blot analysis was adopted for evaluation of protein expression of CCND1. Targeted relationships between NR2F1‐AS1 and miRNA‐338‐3p, as well as miRNA‐338‐3p and CCND1 were predicted using bioinformatics analysis and validated by dual‐luciferase reporter gene assay. Besides, tumour xenograft assay was adopted for verification of the role of NR2F1‐AS1 in TC in vivo. NR2F1‐AS1 and CCND1 were overexpressed, whereas miRNA‐338‐3p was down‐regulated in TC tissues and cell lines. Down‐regulation of NR2F1‐AS1 and CCND1 suppressed proliferation and migration of TC cells yet greatly enhanced cell apoptotic rate. Silence of NR2F1‐AS1 significantly suppressed TC tumorigenesis in vivo. NR2F1‐AS1 sponged miRNA‐338‐3p to up‐regulate CCND1 expression to promote TC progression. Our study demonstrated that up‐regulation of NR2F1‐AS1 accelerated TC progression through regulating miRNA‐338‐3P/CCND1 axis.  相似文献   

8.
This study was aimed to explore the correlation of intercellular adhesion molecule‐1 (ICAM‐1) K469E and megakaryoblastic leukaemia factor‐1 (MKL‐1) ?184C/T polymorphisms with the susceptibility to coronary heart disease (CHD) in the Chinese Han population. 100 CHD patients and 91 healthy people that had no blood connection with each other were enrolled in this case‐control study. ICAM‐1 and MKL‐1 polymorphisms were genotyped by polymerase chain reaction‐restriction fragment length polymorphism (PCR‐RFLP) approach. Multiple logistic regression was used to analyse the correlation between polymorphisms of ICAM‐1 and MKL‐1 and CHD susceptibility. Differences of genotype and allele frequencies of the two SNPs between case and control groups were analysed by chi‐square test. Odds ratios (ORs) and 95% confidence intervals (CIs) were indicated relative susceptibility of CHD. The distributions of ICAM‐1 and MKL‐1 polymorphisms in each group conformed to Hardy‐Weinberg equilibrium (HWE). After adjusting for traditional risk factors, the TT genotype frequency of MKL‐1 ?184C/T polymorphism was found significantly higher in case group than in control group (P < .05). Meanwhile, T allele frequency increased in case group compared with control group, and the differences had statistical significance (P = .04, OR = 2.34, 95% CI = 1.34‐5.26). Logistic regression analysis in this study proved that smoking, hypertension, diabetes and triglyceride (TG) were all risk factors for CHD ICAM‐1 K469E polymorphism has no association with the onset of CHD. But MKL‐1 ?184C/T polymorphism is associated with the risk of CHD and T allele might be a susceptibility factor for CHD.  相似文献   

9.
Auxin is a small molecule involved in most processes related to plant growth and development. Its effect usually depends on the distribution in tissues and the formation of concentration gradients. Until now there has been no tool for the direct tracking of auxin transport at the cellular and tissue level; therefore the majority of studies have been based on various indirect methods. However, due to their various restrictions, relatively little is known about the relationship between various pathways of auxin transport and specific developmental processes. We present a new research tool: fluorescently labelled auxin in the form of a conjugate with two different fluorescent tracers, FITC and RITC, which allows direct observation of auxin transport in plant tissues. Chemical analysis and biological tests have shown that our conjugates have auxin‐like biological activity and transport; therefore they can be used in all experimental systems as an alternative to IAA. In addition, the conjugates are a universal tool that can be applied in studies of all plant groups and species. The conjugation procedure presented in this paper can be adapted to other fluorescent dyes, which are constantly being improved. In our opinion, the conjugates greatly expand the possibilities of research concerning the role of auxin and its transport in different developmental processes in plants.  相似文献   

10.
11.
12.
Auxin is a fundamental plant hormone and its localization within organs plays pivotal roles in plant growth and development. Analysis of many Arabidopsis mutants that were defective in auxin biosynthesis revealed that the indole‐3‐pyruvic acid (IPA) pathway, catalyzed by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) and YUCCA (YUC) families, is the major biosynthetic pathway of indole‐3‐acetic acid (IAA). In contrast, little information is known about the molecular mechanisms of auxin biosynthesis in rice. In this study, we identified a auxin‐related rice mutant, fish bone (fib). FIB encodes an orthologue of TAA genes and loss of FIB function resulted in pleiotropic abnormal phenotypes, such as small leaves with large lamina joint angles, abnormal vascular development, small panicles, abnormal organ identity and defects in root development, together with a reduction in internal IAA levels. Moreover, we found that auxin sensitivity and polar transport activity were altered in the fib mutant. From these results, we suggest that FIB plays a pivotal role in IAA biosynthesis in rice and that auxin biosynthesis, transport and sensitivity are closely interrelated.  相似文献   

13.
How lncRNA SNHG1 influences the aggressiveness of nasopharyngeal carcinoma cells as well as the underlying mechanism was studied. The lncRNA differences were analysed by GSE12452 gene microarray. The expression of SNHG1, MiR‐145‐5p and NUAK1 was identified by qRT‐PCR and western blot. Transfection was conducted to construct nasopharyngeal carcinoma cells with different expressions of SNHG1, miR‐145‐5p and NUAK1. Dual‐luciferase reporter assay was performed to explore the relationship between SNHG1, miR‐145‐5p and NUAK1. Wound‐healing assay and transwell invasion experiments were employed to study changes in cell migration capacity and cell invasion, respectively. Tumour xenografts were performed to observe lung metastasis of nude mice inoculated with transfected CNE cells. SNHG1 is highly expressed in nasopharyngeal carcinoma tissues and in cell lines. Down‐regulation of SNHG1 facilitated the expression of miR‐145‐5p and further suppressed the level of NAUK1 in CNE and HNE‐1 cells. Silencing of SNHG1, up‐regulation of miR‐145‐5p and inhibition of NAUK1 by relative transfection all attenuated the aggressiveness of CNE and HNE‐1 cells both in vivo and in vitro. Moreover, the impaired cell migration and invasion by SNHG1 siRNA could be rescued by cotransfection of miR‐145‐5p in CNE and HNE‐1 cells. LncRNA SNHG1 promoted the expression of NUAK1 by down‐regulating miR‐145‐5p and thus promoted the aggressiveness of nasopharyngeal carcinoma cells through AKT signalling pathway and induced epithelial‐mesenchymal transition (EMT).  相似文献   

14.
Using an automated cell counting technique developed previously (Case et al., Ecology and Evolution 2014; 4: 3494), we explore the lifespan effects of lac‐1, a ceramide synthase gene paralogous to lag‐1 in Neurospora crassa in conjunction with the band bd (ras‐1) gene. We find that the replicative lifespan of a lac‐1KO bd double mutants is short, about one race tube cycle, and this double mutant lacks a strong ~21‐hr clock cycle as shown by race tube and fluorometer analysis of fluorescent strains including lac‐1KO. This short replicative lifespan phenotype is contrasted with a very long estimated chronological lifespan for lac‐1KO bd double mutants from 247 to 462 days based on our regression analyses on log viability, and for the single mutant lac‐1KO, 161 days. Both of these estimated lifespans are much higher than that of previously studied WT and bd single mutant strains. In a lac‐1 rescue and induction experiment, the expression of lac‐1+ as driven by a quinic acid‐dependent promoter actually decreases the median chronological lifespan of cells down to only 7 days, much lower than the 34‐day median lifespan found in control bd conidia also grown on quinic acid media, which we interpret as an effect of balancing selection acting on ceramide levels based on previous findings from the literature. Prior work has shown phytoceramides can act as a signal for apoptosis in stressed N. crassa cells. To test this hypothesis of balancing selection on phytoceramide levels, we examine the viability of WT, lag‐1KO bd, and lac‐1KO bd strains following the dual stresses of heat and glycolysis inhibition, along with phytoceramide treatments of different dosages. We find that the phytoceramide dosage–response curve is altered in the lag‐1KO bd mutant, but not in the lac‐1KO bd mutant. We conclude that phytoceramide production is responsible for the previously reported longevity effects in the lag‐1KO bd mutant, but a different ceramide may be responsible for the longevity effect observed in the lac‐1KO bd mutant.  相似文献   

15.
Lesion mimic mutants that exhibit spontaneous hypersensitive response (HR)‐like necrotic lesions are ideal experimental systems for elucidating molecular mechanisms involved in plant cell death and defence responses. Here we report identification of a rice lesion mimic mutant, spotted leaf 35 (spl35), and cloning of the causal gene by TAIL‐PCR strategy. spl35 exhibited decreased chlorophyll content, higher accumulation of H2O2, up‐regulated expression of defence‐related marker genes, and enhanced resistance to both fungal and bacterial pathogens of rice. The SPL35 gene encodes a novel CUE (coupling of ubiquitin conjugation to ER degradation) domain‐containing protein that is predominantly localized in cytosol, ER and unknown punctate compartment(s). SPL35 is constitutively expressed in all organs, and both overexpression and knockdown of SPL35 cause the lesion mimic phenotype. SPL35 directly interacts with the E2 protein OsUBC5a and the coatomer subunit delta proteins Delta‐COP1 and Delta‐COP2 through the CUE domain, and down‐regulation of these interacting proteins also cause development of HR‐like lesions resembling those in spl35 and activation of defence responses, indicating that SPL35 may be involved in the ubiquitination and vesicular trafficking pathways. Our findings provide insight into a role of SPL35 in regulating cell death and defence response in plants.  相似文献   

16.
The epidermal growth factor receptor (EGFR) is frequently activated in a wide range of solid tumours and represents an important therapeutic target. MicroRNAs (miRNAs) have recently been recognized as a rational and potential modality for anti‐EGFR therapies. However, more EGFR‐targeting miRNAs need to be explored. In this study, we identified a novel EGFR‐targeting miRNA, miRNA‐134 (miR‐134), in non‐small‐cell lung cancer (NSCLC) cell lines. Luciferase assays confirmed that EGFR is a direct target of miR‐134. In addition, the overexpression of miR‐134 inhibited EGFR‐related signaling and suppressed NSCLC cells proliferation by inducing cell cycle arrest and/or apoptosis, suggesting that miR‐134 functions as a tumour suppressor in NSCLC. Further mechanistic investigation including RNAi and rescue experiments suggested that the down‐regulation of EGFR by miR‐134 partially contributes to the antiproliferative role of miR‐134. Last, in vivo experiments demonstrated that miR‐134 suppressed tumour growth of A549 xenograft in nude mice. Taken together, our findings suggest that miR‐134 inhibits non‐small cell lung cancer growth by targeting the EGFR.  相似文献   

17.
Reduced cell wall recalcitrance and increased C6 monosaccharide content are desirable traits for future biofuel crops, as long as these biomass modifications do not significantly alter normal growth and development. Mixed‐linkage glucan (MLG), a cell wall polysaccharide only present in grasses and related species among flowering plants, is comprised of glucose monomers linked by both β‐1,3 and β‐1,4 bonds. Previous data have shown that constitutive production of MLG in barley (Hordeum vulgare) severely compromises growth and development. Here, we used spatio‐temporal strategies to engineer Arabidopsis thaliana plants to accumulate significant amounts of MLG in the cell wall by expressing the rice CslF6 MLG synthase using secondary cell wall and senescence‐associated promoters. Results using secondary wall promoters were suboptimal. When the rice MLG synthase was expressed under the control of a senescence‐associated promoter, we obtained up to four times more glucose in the matrix cell wall fraction and up to a 42% increase in saccharification compared to control lines. Importantly, these plants grew and developed normally. The induction of MLG deposition at senescence correlated with an increase of gluconic acid in cell wall extracts of transgenic plants in contrast to the other approaches presented in this study. MLG produced in Arabidopsis has an altered structure compared to the grass glucan, which likely affects its solubility, while its molecular size is unaffected. The induction of cell wall polysaccharide biosynthesis in senescing tissues offers a novel engineering alternative to enhance cell wall properties of lignocellulosic biofuel crops.  相似文献   

18.
Non‐small‐cell lung cancer (NSCLC) is one of the most common and lethal malignant tumours worldwide with a poor 5‐year survival rate. Recent studies indicated that miRNAs have been involved in the tumorigenic driver pathways in NSCLC, but the relevant molecular mechanisms are not well‐understood. In this study, we investigated the biological functions and molecular mechanisms of miR‐138 in human NSCLC. The effects of miR‐138 on the NSCLC cell growth and epithelial‐mesenchymal transition (EMT) were first examined. Then the targeting connections of miR‐138 with G‐protein‐coupled receptor kinase‐interacting protein 1 (GIT1) and semaphorin 4C (SEMA4C) were confirmed by dual luciferase reporter assays. Finally, the effects of GIT1 and SEMA4C on the NSCLC cell growth and EMT were investigated respectively. We found that the ectopic expression of miR‐138 resulted in a significant inhibition of NSCLC growth and reversion of EMT. GIT1 and SEMA4C were identified as two novel targets of miR‐138. Furthermore, GIT1 and SEMA4C knockdown inhibited the cell growth and reversed EMT, just like the effects of miR‐138 overexpression on NSCLC cells, whereas ectopic expression of GIT1 and SEMA4C partly rescued the suppressive effects of miR‐138 in NSCLC cells. These data represent a crucial step towards the understanding of the novel roles and molecular mechanism of miR‐138, GIT1 and SEMA4C in NSCLC progression, which may provide some new targets or prognostic biomarkers for NSCLC treatment, thus having implications in translational oncology.  相似文献   

19.
Hyperhomocysteinemia is an independent risk factor for both acute and chronic neurological disorders, but little is known about the underlying mechanisms by which elevated homocysteine can promote neuronal cell death. We recently established a role for NMDA receptor‐mediated activation of extracellular signal‐regulated kinase (ERK)‐MAPK in homocysteine‐induced neuronal cell death. In this study, we examined the involvement of the stress‐induced MAPK, p38 in homocysteine‐induced neuronal cell death, and further explored the relationship between the two MAPKs, ERK and p38, in triggering cell death. Homocysteine‐mediated NMDA receptor stimulation and subsequent Ca2+ influx led to a biphasic activation of p38 MAPK characterized by an initial rapid, but transient activation followed by a delayed and more prolonged response. Selective inhibition of the delayed p38 MAPK activity was sufficient to attenuate homocysteine‐induced neuronal cell death. Using pharmacological and RNAi approaches, we further demonstrated that both the initial and delayed activation of p38 MAPK is downstream of, and dependent on activation of ERK MAPK. Our findings highlight a novel interplay between ERK and p38 MAPK in homocysteine‐NMDA receptor‐induced neuronal cell death.  相似文献   

20.
Plant architecture, a complex of the important agronomic traits that determine grain yield, is a primary target of artificial selection of rice domestication and improvement. Some important genes affecting plant architecture and grain yield have been isolated and characterized in recent decades; however, their underlying mechanism remains to be elucidated. Here, we report genetic identification and functional analysis of the PLANT ARCHITECTURE AND YIELD 1 (PAY1) gene in rice, which affects plant architecture and grain yield in rice. Transgenic plants over‐expressing PAY1 had twice the number of grains per panicle and consequently produced nearly 38% more grain yield per plant than control plants. Mechanistically, PAY1 could improve plant architecture via affecting polar auxin transport activity and altering endogenous indole‐3‐acetic acid distribution. Furthermore, introgression of PAY1 into elite rice cultivars, using marker‐assisted background selection, dramatically increased grain yield compared with the recipient parents. Overall, these results demonstrated that PAY1 could be a new beneficial genetic resource for shaping ideal plant architecture and breeding high‐yielding rice varieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号