共查询到20条相似文献,搜索用时 15 毫秒
1.
Hui‐Fen Kuo Yu‐Ying Hsu Wei‐Chi Lin Kai‐Yu Chen Teun Munnik Charles A. Brearley Tzyy‐Jen Chiou 《The Plant journal : for cell and molecular biology》2018,95(4):613-630
Emerging studies have suggested that there is a close link between inositol phosphate (InsP) metabolism and cellular phosphate (Pi) homeostasis in eukaryotes; however, whether a common InsP species is deployed as an evolutionarily conserved metabolic messenger to mediate Pi signaling remains unknown. Here, using genetics and InsP profiling combined with Pi‐starvation response (PSR) analysis in Arabidopsis thaliana, we showed that the kinase activity of inositol pentakisphosphate 2‐kinase (IPK1), an enzyme required for phytate (inositol hexakisphosphate; InsP6) synthesis, is indispensable for maintaining Pi homeostasis under Pi‐replete conditions, and inositol 1,3,4‐trisphosphate 5/6‐kinase 1 (ITPK1) plays an equivalent role. Although both ipk1‐1 and itpk1 mutants exhibited decreased levels of InsP6 and diphosphoinositol pentakisphosphate (PP‐InsP5; InsP7), disruption of another ITPK family enzyme, ITPK4, which correspondingly caused depletion of InsP6 and InsP7, did not display similar Pi‐related phenotypes, which precludes these InsP species from being effectors. Notably, the level of d /l ‐Ins(3,4,5,6)P4 was concurrently elevated in both ipk1‐1 and itpk1 mutants, which showed a specific correlation with the misregulated Pi phenotypes. However, the level of d /l ‐Ins(3,4,5,6)P4 is not responsive to Pi starvation that instead manifests a shoot‐specific increase in the InsP7 level. This study demonstrates a more nuanced picture of the intersection of InsP metabolism and Pi homeostasis and PSRs than has previously been elaborated, and additionally establishes intermediate steps to phytate biosynthesis in plant vegetative tissues. 相似文献
2.
Jiawei Wang Jianfeng He Hai Huang Yijing Zhang Lin Xu 《The Plant journal : for cell and molecular biology》2014,78(4):706-714
Chromatin is a highly organized structure with repetitive nucleosome subunits. Nucleosome distribution patterns, which contain information on epigenetic controls, are dynamically affected by ATP‐dependent chromatin remodeling factors (remodelers). However, whether plants have specific nucleosome distribution patterns and how plant remodelers contribute to the pattern formation are not clear. In this study we used the micrococcal nuclease digestion followed by deep sequencing (MNase‐seq) assay to show the genome‐wide nucleosome pattern in Arabidopsis thaliana. We demonstrated that the nucleosome distribution patterns of Arabidopsis are associated with the gene expression level, and have several specific characteristics that are different from those of animals and yeast. In addition, we found that remodelers in the A. thaliana imitation switch (AtISWI) subfamily are important for the formation of the nucleosome distribution pattern. Double mutations in the AtISWI genes, CHROMATIN REMODELING 11 (CHR11) and CHR17, resulted in the loss of the evenly spaced nucleosome pattern in gene bodies, but did not affect nucleosome density, supporting a previous idea that the primary role of ISWI is to slide nucleosomes in gene bodies for pattern formation. 相似文献
3.
Huadong Zhan Yujiao Zhong Zhongnan Yang Huijun Xia 《The Plant journal : for cell and molecular biology》2015,82(5):758-771
Inositol polyphosphate kinase (IPK2) is a key component of inositol polyphosphate signaling. There are two highly homologous inositol polyphosphate kinases (AtIPK2α and AtIPK2β) in Arabidopsis. Previous studies that overexpressed or reduced the expression of AtIPK2α and AtIPK2β revealed their roles in auxiliary shoot branching, abiotic stress responses and root growth. Here, we report that AtIPK2α and AtIPK2β act redundantly during pollen development, pollen tube guidance and embryogenesis. Single knock‐out mutants of atipk2α and atipk2β were indistinguishable from the wild type, whereas the atipk2α atipk2β double mutant could not be obtained. Detailed genetic and cytological investigations showed that the mutation of AtIPK2α and AtIPK2β resulted in severely reduced transmission of male gametophyte as a result of abnormal pollen development and defective pollen tube guidance. In addition, the early embryo development of the atipk2α atipk2β double mutant was also aborted. Expressing either catalytically inactive or substrate specificity‐altered variants of AtIPK2β could not rescue the male gametophyte and embryogenesis defects of the atipk2α atipk2β double mutant, implying that the kinase activity of AtIPK2 is required for pollen development, pollen tube guidance and embryogenesis. Taken together, our results provide genetic evidence for the requirement of inositol polyphosphate signaling in plant sexual reproduction. 相似文献
4.
5.
Jose Ignacio Baos‐Sanz Maider Villate Julia Sanz‐Aparicio Charles Alistair Brearley Beatriz Gonzlez 《Acta Crystallographica. Section F, Structural Biology Communications》2010,66(1):102-106
Inositol 1,3,4,5,6‐pentakisphosphate kinase (IP5 2‐K) is an enzyme involved in inositol metabolism that synthesizes IP6 (inositol 1,2,3,4,5,6‐hexakisphosphate) from inositol 1,3,4,5,6‐pentakisphosphate (IP5) and ATP. IP6 is the major phosphorus reserve in plants, while in mammals it is involved in multiple cellular events such as DNA editing and chromatin remodelling. In addition, IP6 is the precursor of other highly phosphorylated inositols which also play highly relevant roles. IP5 2‐K is the only enzyme that phosphorylates the 2‐OH axial position of the inositide and understanding its molecular mechanism of substrate specificity is of great interest in cell biology. IP5 2‐K from Arabidopsis thaliana has been expressed in Escherichia coli as two different fusion proteins and purified. Both protein preparations yielded crystals of different quality, always in the presence of IP6. The best crystals obtained for X‐ray crystallographic analysis belonged to space group P212121, with unit‐cell parameters a = 58.124, b = 113.591, c = 142.478 Å. Several diffraction data sets were collected for the native enzyme and two heavy‐atom derivatives using a synchrotron source. 相似文献
6.
Wangbin Zhou Juan Gao Jing Ma Lin Cao Chi Zhang Yan Zhu Aiwu Dong Wen‐Hui Shen 《The Plant journal : for cell and molecular biology》2016,88(3):397-410
Homologous recombination (HR) of nuclear DNA occurs within the context of a highly complex chromatin structure. Despite extensive studies of HR in diverse organisms, mechanisms regulating HR within the chromatin context remain poorly elucidated. Here we investigate the role and interplay of the histone chaperones NUCLEOSOME ASSEMBLY PROTEIN1 (NAP1) and NAP1‐RELATED PROTEIN (NRP) and the ATP‐dependent chromatin‐remodeling factor INOSITOL AUXOTROPHY80 (INO80) in regulating somatic HR in Arabidopsis thaliana. We show that simultaneous knockout of the four AtNAP1 genes and the two NRP genes in the sextuple mutant m123456‐1 barely affects normal plant growth and development. Interestingly, compared with the respective AtNAP1 (m123‐1 and m1234‐1) or NRP (m56‐1) loss‐of‐function mutants, the sextuple mutant m123456‐1 displays an enhanced plant hypersensitivity to UV or bleomycin treatments. Using HR reporter constructs, we show that AtNAP1 and NRP act in parallel to synergistically promote somatic HR. Distinctively, the AtINO80 loss‐of‐function mutation (atino80‐5) is epistatic to m56‐1 in plant phenotype and telomere length but hypostatic to m56‐1 in HR determinacy. Further analyses show that expression of HR machinery genes and phosphorylation of H2A.X (γ‐H2A.X) are not impaired in the mutants. Collectively, our study indicates that NRP and AtNAP1 synergistically promote HR upstream of AtINO80‐mediated chromatin remodeling after the formation of γ‐H2A.X foci during DNA damage repair. 相似文献
7.
Mintu Desai Padma Rangarajan Janet L. Donahue Sarah P. Williams Eric S. Land Mihir K. Mandal Brian Q. Phillippy Imara Y. Perera Victor Raboy Glenda E. Gillaspy 《The Plant journal : for cell and molecular biology》2014,80(4):642-653
Inositol pyrophosphates are unique cellular signaling molecules with recently discovered roles in energy sensing and metabolism. Studies in eukaryotes have revealed that these compounds have a rapid turnover, and thus only small amounts accumulate. Inositol pyrophosphates have not been the subject of investigation in plants even though seeds produce large amounts of their precursor, myo‐inositol hexakisphosphate (InsP6). Here, we report that Arabidopsis and maize InsP6 transporter mutants have elevated levels of inositol pyrophosphates in their seed, providing unequivocal identification of their presence in plant tissues. We also show that plant seeds store a little over 1% of their inositol phosphate pool as InsP7 and InsP8. Many tissues, including, seed, seedlings, roots and leaves accumulate InsP7 and InsP8, thus synthesis is not confined to tissues with high InsP6. We have identified two highly similar Arabidopsis genes, AtVip1 and AtVip2, which are orthologous to the yeast and mammalian VIP kinases. Both AtVip1 and AtVip2 encode proteins capable of restoring InsP7 synthesis in yeast mutants, thus AtVip1 and AtVip2 can function as bonafide InsP6 kinases. AtVip1 and AtVip2 are differentially expressed in plant tissues, suggesting non‐redundant or non‐overlapping functions in plants. These results contribute to our knowledge of inositol phosphate metabolism and will lay a foundation for understanding the role of InsP7 and InsP8 in plants. 相似文献
8.
9.
10.
11.
Hirotomo Takatsuka Chikage Umeda‐Hara Masaaki Umeda 《The Plant journal : for cell and molecular biology》2015,82(6):1004-1017
For the full activation of cyclin‐dependent kinases (CDKs), not only cyclin binding but also CDK phosphorylation is required. This activating phosphorylation is mediated by CDK‐activating kinases (CAKs). Arabidopsis has four genes showing similarity to vertebrate‐type CAKs, three CDKDs (CDKD;1‐CDKD;3) and one CDKF (CDKF;1). We previously found that the cdkf;1 mutant is defective in post‐embryonic development, even though the kinase activities of core CDKs remain unchanged relative to the wild type. This raised a question about the involvement of CDKDs in CDK activation in planta. Here we report that the cdkd;1 cdkd;3 double mutant showed gametophytic lethality. Most cdkd;1‐1 cdkd;3‐1 pollen grains were defective in pollen mitosis I and II, producing one‐cell or two‐cell pollen grains that lacked fertilization ability. We also found that the double knock‐out of CDKD;1 and CDKD;3 caused arrest and/or delay in the progression of female gametogenesis at multiple steps. Our genetic analyses revealed that the functions of CDKF;1 and CDKD;1 or CDKD;3 do not overlap, either during gametophyte and embryo development or in post‐embryonic development. Consistent with these analyses, CDKF;1 expression in the cdkd;1‐1 cdkd;3‐1 mutant could not rescue the gametophytic lethality. These results suggest that, in Arabidopsis, CDKD;1 and CDKD;3 function as CAKs controlling mitosis, whereas CDKF;1 plays a distinct role, mainly in post‐embryonic development. We propose that CDKD;1 and CDKD;3 phosphorylate and activate all core CDKs, CDKA, CDKB1 and CDKB2, thereby governing cell cycle progression throughout plant development. 相似文献
12.
13.
14.
15.
Vladimir Maksimov Miyuki Nakamura Thomas Wildhaber Paolo Nanni Margareta Ramström Jonas Bergquist Lars Hennig 《The Plant journal : for cell and molecular biology》2016,88(3):425-436
Histones are abundant cellular proteins but, if not incorporated into chromatin, they are usually bound by histone chaperones. Here, we identify Arabidopsis NASP as a chaperone for histones H3.1 and H3.3. NASP interacts in vitro with monomeric H3.1 and H3.3 as well as with histone H3.1–H4 and H3.3–H4 dimers. However, NASP does not bind to monomeric H4. NASP shifts the equilibrium between histone dimers and tetramers towards tetramers but does not interact with tetramers in vitro. Arabidopsis NASP promotes [H3–H4]2 tetrasome formation, possibly by providing preassembled histone tetramers. However, NASP does not promote disassembly of in vitro preassembled tetrasomes. In contrast to its mammalian homolog, Arabidopsis NASP is a predominantly nuclear protein. In vivo, NASP binds mainly monomeric H3.1 and H3.3. Pulldown experiments indicated that NASP may also interact with the histone chaperone MSI1 and a HSC70 heat shock protein. 相似文献
16.
17.
18.
19.