首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Histone H3 lysine 27 (H3K27) methylation and H2A monoubiquitination (ubH2A) are two closely related histone modifications that regulate Polycomb silencing. Previous studies reported that H3K27 trimethylation (H3K27me3) rarely coexists with H3K36 di- or tri-methylation (H3K36me2/3) on the same histone H3 tails, which is partially controlled by the direct inhibition of the enzymatic activity of H3K27-specific methyltransferase PRC2. By contrast, H3K27 methylation does not affect the catalytic activity of H3K36-specific methyltransferases, suggesting other Polycomb mechanism(s) may negatively regulate the H3K36-specific methyltransferase(s). In this study, we established a simple protocol to purify milligram quantities of ubH2A from mammalian cells, which were used to reconstitute nucleosome substrates with fully ubiquitinated H2A. A number of histone methyltransferases were then tested on these nucleosome substrates. Notably, all of the H3K36-specific methyltransferases, including ASH1L, HYPB, NSD1, and NSD2 were inhibited by ubH2A, whereas the other histone methyltransferases, including PRC2, G9a, and Pr-Set7 were not affected by ubH2A. Together with previous reports, these findings collectively explain the mutual repulsion of H3K36me2/3 and Polycomb modifications.  相似文献   

3.
Chromatin insulators affect interactions between promoters and enhancers/silencers and function as barriers for the spreading of repressive chromatin. Drosophila insulator protein dCTCF marks active promoters and boundaries of many histone H3K27 trimethylation domains associated with repressed chromatin. In particular, dCTCF binds to such boundaries between the parasegment-specific regulatory domains of the Bithorax complex. Here we demonstrate that the evolutionarily conserved protein ENY2 is recruited to the zinc-finger domain of dCTCF and is required for the barrier activity of dCTCF-dependent insulators in transgenic lines. Inactivation of ENY2 by RNAi in BG3 cells leads to the spreading of H3K27 trimethylation and Pc protein at several dCTCF boundaries. The results suggest that evolutionarily conserved ENY2 is responsible for barrier activity mediated by the dCTCF protein.  相似文献   

4.
《Epigenetics》2013,8(9):1261-1270
Chromatin insulators affect interactions between promoters and enhancers/silencers and function as barriers for the spreading of repressive chromatin. Drosophila insulator protein dCTCF marks active promoters and boundaries of many histone H3K27 trimethylation domains associated with repressed chromatin. In particular, dCTCF binds to such boundaries between the parasegment-specific regulatory domains of the Bithorax complex. Here we demonstrate that the evolutionarily conserved protein ENY2 is recruited to the zinc-finger domain of dCTCF and is required for the barrier activity of dCTCF-dependent insulators in transgenic lines. Inactivation of ENY2 by RNAi in BG3 cells leads to the spreading of H3K27 trimethylation and Pc protein at several dCTCF boundaries. The results suggest that evolutionarily conserved ENY2 is responsible for barrier activity mediated by the dCTCF protein.  相似文献   

5.
6.
The NSD (nuclear receptor SET domain-containing) family of histone lysine methyltransferases is a critical participant in chromatin integrity as evidenced by the number of human diseases associated with the aberrant expression of its family members. Yet, the specific targets of these enzymes are not clear, with marked discrepancies being reported in the literature. We demonstrate that NSD2 can exhibit disparate target preferences based on the nature of the substrate provided. The NSD2 complex purified from human cells and recombinant NSD2 both exhibit specific targeting of histone H3 lysine 36 (H3K36) when provided with nucleosome substrates, but histone H4 lysine 44 is the primary target in the case of octamer substrates, irrespective of the histones being native or recombinant. This disparity is negated when NSD2 is presented with octamer targets in conjunction with short single- or double-stranded DNA. Although the octamers cannot form nucleosomes, the target is nonetheless nucleosome-specific as is the product, dimethylated H3K36. This study clarifies in part the previous discrepancies reported with respect to NSD targets. We propose that DNA acts as an allosteric effector of NSD2 such that H3K36 becomes the preferred target.  相似文献   

7.
Modifications on histones or on DNA recruit proteins that regulate chromatin function. Here, we use nucleosomes methylated on DNA and on histone H3 in an affinity assay, in conjunction with a SILAC-based proteomic analysis, to identify "crosstalk" between these two distinct classes of modification. Our analysis reveals proteins whose binding to nucleosomes is regulated by methylation of CpGs, H3K4, H3K9, and H3K27 or a combination thereof. We identify the origin recognition complex (ORC), including LRWD1 as a subunit, to be a methylation-sensitive nucleosome interactor that is recruited cooperatively by DNA and histone methylation. Other interactors, such as the lysine demethylase Fbxl11/KDM2A, recognize nucleosomes methylated on histones, but their recruitment is disrupted by DNA methylation. These data establish SILAC nucleosome affinity purifications (SNAP) as a tool for studying the dynamics between different chromatin modifications and provide a modification binding "profile" for proteins regulated by DNA and histone methylation.  相似文献   

8.
The Sotos syndrome gene product, NSD1, is a SET domain histone methyltransferase that primarily dimethylates nucleosomal histone H3 lysine 36 (H3K36). To date, the intrinsic properties of NSD1 that determine its nucleosomal substrate selectivity and dimethyl H3K36 product specificity remain unknown. The 1.7 Å structure of the catalytic domain of NSD1 presented here shows that a regulatory loop adopts a conformation that prevents free access of H3K36 to the bound S-adenosyl-l-methionine. Molecular dynamics simulation and computational docking revealed that this normally inhibitory loop can adopt an active conformation, allowing H3K36 access to the active site, and that the nucleosome may stabilize the active conformation of the regulatory loop. Hence, our study reveals an autoregulatory mechanism of NSD1 and provides insight into the molecular mechanism of the nucleosomal substrate selectivity of this disease-related H3K36 methyltransferase.  相似文献   

9.
10.
11.
12.
The importance of local chromatin structure in regulating replication initiation has become increasingly apparent. Most recently, histone methylation and nucleosome positioning have been added to the list of modifications demonstrated to regulate origins. In particular, the methylation states of H3K4, H3K36 and H4K20 have been associated with establishing active, repressed or poised origins depending on the timing and extent of methylation. The stability and precise positioning of nucleosomes has also been demonstrated to affect replication efficiency. Although it is not yet clear how these modifications alter the behavior of specific replication factors, ample evidence establishes their role in maintaining coordinated replication. This review will summarize recent advances in understanding these aspects of chromatin structure in DNA replication origin control.Key words: chromatin, histone methylation, nucleosome positioning, nucleosome stability, origin, post-translational modification, replication  相似文献   

13.
Multiscale modeling of nucleosome dynamics   总被引:3,自引:1,他引:2       下载免费PDF全文
Nucleosomes form the fundamental building blocks of chromatin. Subtle modifications of the constituent histone tails mediate chromatin stability and regulate gene expression. For this reason, it is important to understand structural dynamics of nucleosomes at atomic levels. We report a novel multiscale model of the fundamental chromatin unit, a nucleosome, using a simplified model for rapid discrete molecular dynamics simulations and an all-atom model for detailed structural investigation. Using a simplified structural model, we perform equilibrium simulations of a single nucleosome at various temperatures. We further reconstruct all-atom nucleosome structures from simulation trajectories. We find that histone tails bind to nucleosomal DNA via strong salt-bridge interactions over a wide range of temperatures, suggesting a mechanism of chromatin structural organization whereby histone tails regulate inter- and intranucleosomal assemblies via binding with nucleosomal DNA. We identify specific regions of the histone core H2A/H2B-H4/H3-H3/H4-H2B/H2A, termed “cold sites”, which retain a significant fraction of contacts with adjoining residues throughout the simulation, indicating their functional role in nucleosome organization. Cold sites are clustered around H3-H3, H2A-H4 and H4-H2A interhistone interfaces, indicating the necessity of these contacts for nucleosome stability. Essential dynamics analysis of simulation trajectories shows that bending across the H3-H3 is a prominent mode of intranucleosomal dynamics. We postulate that effects of salts on mononucleosomes can be modeled in discrete molecular dynamics by modulating histone-DNA interaction potentials. Local fluctuations in nucleosomal DNA vary significantly along the DNA sequence, suggesting that only a fraction of histone-DNA contacts make strong interactions dominating mononucleosomal dynamics. Our findings suggest that histone tails have a direct functional role in stabilizing higher-order chromatin structure, mediated by salt-bridge interactions with adjacent DNA.  相似文献   

14.
15.
Histone lysine methylation plays an important role in the regulation of ventricular remodelling. NSD2 is involved in many types of tumours through enhancing H3K36me2 expression. However, the role of NSD2 in the regulation of histone lysine methylation during ventricular remodelling remains unclear. In this study, we established cardiac hypertrophy model in C57BL/6 mice by transverse aortic constriction and found that histone lysine methylation participated in ventricular remodelling regulation via the up‐regulation of H3K27me2 and H3K36me2 expression. In addition, we constructed transgenic C57BL/6 mice with conditional knockout of NSD2 (NSD2?/?) in the myocardium. NSD2?/? C57BL/6 mice had milder ventricular remodelling and significantly improved cardiac function compared with wild‐type mice, and the expression of H3K36me2 but not H3K27me2 was down‐regulated. In conclusion, NSD2 promotes ventricular remodelling mediated by the regulation of H3K36me2.  相似文献   

16.
Recognition of histone post-translational modifications is pivotal for directing chromatin-modifying enzymes to specific genomic regions and regulating their activities. Emerging evidence suggests that other structural features of nucleosomes also contribute to precise targeting of downstream chromatin complexes, such as linker DNA, the histone globular domain, and nucleosome spacing. However, how chromatin complexes coordinate individual interactions to achieve high affinity and specificity remains unclear. The Rpd3S histone deacetylase utilizes the chromodomain-containing Eaf3 subunit and the PHD domain-containing Rco1 subunit to recognize nucleosomes that are methylated at lysine 36 of histone H3 (H3K36me). We showed previously that the binding of Eaf3 to H3K36me can be allosterically activated by Rco1. To investigate how this chromatin recognition module is regulated in the context of the Rpd3S complex, we first determined the subunit interaction network of Rpd3S. Interestingly, we found that Rpd3S contains two copies of the essential subunit Rco1, and both copies of Rco1 are required for full functionality of Rpd3S. Our functional dissection of Rco1 revealed that besides its known chromatin-recognition interfaces, other regions of Rco1 are also critical for Rpd3S to recognize its nucleosomal substrates and functionin vivo. This unexpected result uncovered an important and understudied aspect of chromatin recognition. It suggests that precisely reading modified chromatin may not only need the combined actions of reader domains but also require an internal signaling circuit that coordinates the individual actions in a productive way.  相似文献   

17.
Abstract: Epigenetic regulation of the chromatin landscape is often orchestrated through modulation of nucleosomes. Nucleosomes are composed of two copies each of the four core histones, H2A, H2B, H3, and H4, wrapped in ~150 bp of DNA. We focus this review on recent structural studies that further elucidate the mechanisms used by macromolecular complexes to mediate histone modification and nucleosome assembly. Nucleosome assembly, spacing, and variant histone incorporation are coordinated by chromatin remodeler and histone chaperone complexes. Several recent structural studies highlight how disparate families of histone chaperones and chromatin remodelers share similar features that underlie how they interact with their respective histone or nucleosome substrates. Post‐translational modification of histone residues is mediated by enzymatic subunits within large complexes. Until recently, relatively little was known about how association with auxiliary subunits serves to modulate the activity and specificity of the enzymatic subunit. Analysis of several recent structures highlights the different modes that auxiliary subunits use to influence enzymatic activity or direct specificity toward individual histone residues.  相似文献   

18.
19.
Post‐translational modifications of histone tails play a crucial role in gene regulation. Here, we performed chromatin profiling by quantitative targeted mass spectrometry to assess all possible modifications of the core histones. We identified a bivalent combination, a dually marked H3K9me3/H3K14ac modification in the liver, that is significantly decreased in old hepatocytes. Subsequent sequential ChIP‐Seq identified dually marked single nucleosome regions, with reduced number of sites and decreased signal in old livers, confirming mass spectrometry results. We detected H3K9me3 and H3K14ac bulk ChIP‐Seq signal in reChIP nucleosome regions, suggesting a correlation between H3K9me3/H3K14ac bulk bivalent genomic regions and dually marked single nucleosomes. Histone H3K9 deacetylase Hdac3, as well as H3K9 methyltransferase Setdb1, found in complex Kap1, occupied both bulk and single nucleosome bivalent regions in both young and old livers, correlating to presence of H3K9me3. Expression of genes associated with bivalent regions in young liver, including those regulating cholesterol secretion and triglyceride synthesis, is upregulated in old liver once the bivalency is lost. Hence, H3K9me3/H3K14ac dually marked regions define a poised inactive state that is resolved with loss of one or both of the chromatin marks, which subsequently leads to change in gene expression.  相似文献   

20.
Although the details of the structural involvement of histone H1 in the organization of the nucleosome are quite well understood, the sequential events involved in the recognition of its binding site are not as well known. We have used a recombinant human histone H1 (H1.1) in which the N- and C-terminal domains (NTD/CTD) have been swapped and we have reconstituted it on to a 208-bp nucleosome. We have shown that the swapped version of the protein is still able to bind to nucleosomes through its structurally folded wing helix domain (WHD); however, analytical ultracentrifuge analysis demonstrates its ability to properly fold the chromatin fibre is impaired. Furthermore, FRAP analysis shows that the highly dynamic binding association of histone H1 with the chromatin fibre is altered, with a severely decreased half time of residence. All of this suggests that proper binding of histone H1 to chromatin is determined by the simultaneous and synergistic binding of its WHD–CTD to the nucleosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号