首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified a DNA sequence in adenovirus type 16 which contains recognition signals for encapsidation of the viral DNA. The sequence acts in cis to direct the encapsidation of DNA from the end of the viral genome where it is located. The sequence is normally contained in the first 390–400 bp of the left end of the genome. The location was determined by analyzing a series of spontaneous mutants of Ad16 which carried reduplications of 200 to >500 bp of left end sequences at the right end of the genome, thus giving rise to enlarged inverted terminal repetitions (ITR). In plaque-purified (PP) Ad16 prototype virus the subgenomic DNA found in incomplete virus particles exclusively represents left end sequences. When the reduplication mutants were analyzed, we found that a reduplication of about 390 bp enabled subgenomic DNA molecules containing the right end to be encapsidated into incomplete particles as well. A reduplication of about 290 bp, however, did not allow subgenomic DNA containing the right end to be encapsidated. The difference in encapsidation described could not be attributed to an asymetric DNA replication in the mutants, since subgenomic DNA originating from both ends of the genome was produced in equal amounts in the infected cells. We conclude that an essential part of the encapsidation sequence must be located between 290 and 390 bp from the left end of the Ad16 genome.  相似文献   

2.
We have identified a novel subgenomic viral DNA in KB cells infected with adenovirus 2 (Ad2) under high multiplicities of infection. KB cells were infected with Ad2 at multiplicities of infection greater than 100 PFU/cell. 32P-labeled viral DNA was selectively extracted by a modification of the method of Hirt (8) from the infected cells and analyzed by electrophoresis on agarose gels. In addition to full-length DNA (33 to 23 x 10(6) daltons), a unique subgenomic DNA species of about 12 to 13% (2.6 x 10(6) daltons) of full-length DNA in size was found in the infected cells. This subgenomic DNA was found to be double stranded and was not packaged inside the virus particles. This DNA could be isolated in large amounts (30 to 50% of total viral DNA) from infected cells. When cleaved with restriction endonuclease KpnI, the subgenomic DNA yielded two fragments, each corresponding to about 6% and 7% of the full-length genome in size.  相似文献   

3.
The tyrosine-containing peptide covalently attached to each 5'-terminus of adenovirus type 7 (Ad 7; Greider) DNA was labeled with 125I. The 5'-labeled DNA was subjected to digestion with several restriction endonucleases and the size of the labeled terminal fragments was determined. Partial hydrolysis by these endonucleases generated a series of labeled fragments which were fused to the terminal fragments and could, therefore, be detected by autoradiography. From the sizes of the partial products the location of the cleavage sites of the enzymes on Ad7 DNA could be determined. The subgenomic DNA extracted from incomplete particles by protease treatment could also be labeled with 125I, since it was found to contain the tyrosine-containing peptide covalently attached to the preferentially packaged left end of the genome.  相似文献   

4.
Hepatitis B virus (HBV) infects more than 350 million people, of which one million will die every year. The infectious virion is an enveloped capsid containing the viral polymerase and double-stranded DNA genome. The structure of the capsid assembled in vitro from expressed core protein has been studied intensively. However, little is known about the structure and assembly of native capsids present in infected cells, and even less is known about the structure of mature virions. We used electron cryomicroscopy (cryo-EM) and image analysis to examine HBV virions (Dane particles) isolated from patient serum and capsids positive and negative for HBV DNA isolated from the livers of transgenic mice. Both types of capsids assembled as icosahedral particles indistinguishable from previous image reconstructions of capsids. Likewise, the virions contained capsids with either T = 3 or T = 4 icosahedral symmetry. Projections extending from the lipid envelope were attributed to surface glycoproteins. Their packing was unexpectedly nonicosahedral but conformed to an ordered lattice. These structural features distinguish HBV from other enveloped viruses.  相似文献   

5.
The early and late gene products of human adenovirus type 12 (Ad12), as well as the viral proteins synthesized in an Ad12-transformed cell line, were identified by translation of viral mRNA in an in vitro protein-synthesizing system. Cytoplasmic RNA was isolated from permissive KB or nonpermissive BHK cells infected with Ad12 and from Ad12-transformed HA12/7 cells. Virus-specific RNA was selected by hybridization to Ad12 DNA covalently bound to cellulose. Viral RNA was then translated in a fractionated rabbit reticulocyte cell-free system or in wheat germ S-30 extracts. The proteins synthesized were characterized by immunoprecipitation and subsequent electrophoresis on sodium dodecyl sulfate-polyacrylamide gels. RNA prepared from KB cells late after infection with Ad12 elicited the synthesis of most of the structural polypeptides of the virion and at least two presumably nonstructural Ad12 proteins. When viral RNA isolated early after infection of KB cells with Ad12 was translated in vitro, 10 polypeptides were observed: E-68K, E-50K, E-42K, E-39K, E-34K, E-21K, E-19K, E-13K, E-12K, and E-10K. Ad12-specific RNA was also isolated from the Ad12-transformed hamster cell line HA12/7, which contains several copies of the Ad12 genome integrated in the host genome. The RNA codes for at least seven polypeptides with molecular weights very similar to those of the early viral proteins.  相似文献   

6.
Virus-specific DNA fragments that are shorter than the full-length viral genomes have been isolated from HeLa cells productively infected with adenovirus type 3. A number of predominant size classes could be detected by gel electrophoresis and hybridization, and the array of sizes was similar or identical to the selection in DNA purified from incomplete particles of this serotype (E. Daniell, J. Virol. 19:685-708, 1976). A large fraction of these short DNA molecules contained long inverted terminal repetitions, as did DNA molecules from incomplete particles. Restriction analysis showed that these subgenomic molecules consist of sequences from the two molecular ends of the normal genome. These results suggest that the predominance of left-hand end fragments seen in packaged incomplete DNAs results from selective packaging, whereas the predominance of certain size classes of intracellular viral DNA is a function of prepackaging events. The incomplete DNAs were generated at all times during viral DNA replication, and the yield relative to complete DNA did not seem to vary significantly with time or multiplicity of infection or when the virus was propagated on different human cell types.  相似文献   

7.
The organization of intranuclear Herpes simplex virus DNA in rabbit fibroblast cells infected for 7 hr with HSV type 1 was examined before and during encapsidation by electron microscopic cytochemistry. Most non-encapsidated viral deoxyribonucleoprotein fibers exhibited a non-nucleosomal configuration. Empty capsids within the virus-specific regions of infected nuclei were wrapped with portions of the viral genome which adhered tightly to their surfaces even under conditions that loosened and spread apart other nucleoprotein fibers. During encapsidation, the internal surface of the capsid shell also appeared to bind a part of the viral genome, specifically the outer cage portion, which is detectable in methanol-dehydrated cells. Variations in the amount of DNA within the capsids indicated that the insertion of HSV genome into the capsid is a progressive process. The cage and core cylinder portions of the viral nucleoid appear to form and develop simultaneously. We propose that there may be binding sites on both the external and internal surfaces of the capsid shells which might play a role in the encapsidation process.  相似文献   

8.
Peter Palese 《Cell》1977,10(1):1-10
The 5′ terminal sequences of several adenovirus 2 (Ad2) mRNAs, isolated late in infection, are complementary to sequences within the Ad2 genome which are remote from the DNA from which the main coding sequence of each mRNA is transcribed. This has been observed by forming RNA displacement loops (R loops) between Ad2 DNA and unfractionated polysomal RNA from infected cells. The 5′ terminal sequences of mRNAs in R loops, variously located between positions 36 and 92, form complex secondary hybrids with single-stranded DNA from restriction endonuclease fragments containing sequences to the left of position 36 on the Ad2 genome. The structures visualized in the electron microscope show that short sequences coded at map positions 16.6, 19.6 and 26.6 on the R strand are joined to form a leader sequence of 150–200 nucleotides at the 5′ end of many late mRNAs. A late mRNA which maps to the left of position 16.6 shows a different pattern of second site hybridization. It contains sequences from 4.9?6.0 linked directly to those from 9.6?10.9. These findings imply a new mechanism for the biosynthesis of Ad2 mRNA in mammalian cells.  相似文献   

9.
The maturation of pseudorabies virus DNA from the replicative concatemeric form to molecules of genome length was examined using nine DNA+ temperature-sensitive mutants of pseudorabies virus, each belonging to a different complementation group. At the nonpermissive temperature, cells infected with each of the mutants synthesized concatemeric DNA. Cleavage of the concatemeric DNA to genome-length viral DNA was defective in all the DNA+ ts mutants tested, indicating that several viral gene products are involved in the DNA maturation process. In none of the ts mutant-infected cells were capsids with electron-dense cores (containing DNA) formed. Empty capsids with electron-translucent cores were, however, formed in cells infected with six of the nine temperature-sensitive mutants; in cells infected with three of the mutants, no capsid assembly occurred. Because these three mutants are deficient both in maturation of DNA and in the assembly of viral capsids, we conclude that maturation of viral DNA is dependent upon the assembly of capsids. In cells infected with two of the mutants (tsN and tsIE13), normal maturation of viral DNA occurred after shiftdown of the cells to the permissive temperature in the presence of cycloheximide, indicating that the temperature-sensitive proteins involved in DNA maturation became functional after shiftdown. Furthermore, because cycloheximide reduces maturation of DNA in wild-type-infected cells but not in cells infected with these two mutants, we conclude that a protein(s) necessary for the maturation of concatemeric DNA, which is present in limiting amounts during the normal course of infection, accumulated in the mutant-infected cells at the nonpermissive temperature. Concomitant with cleavage of concatemeric DNA, full capsids with electron-dense cores appeared after shiftdown of tsN-infected cells to the permissive temperature, indicating that there may be a correlation between maturation of DNA and formation of full capsids. The number of empty and full capsids (containing electron-dense cores) present in tsN-infected cells incubated at the nonpermissive temperature, as well as after shiftdown to the permissive temperature in the presence of cycloheximide, was determined by electron microscopy and by sedimentation analysis in sucrose gradients. After shiftdown to the permissive temperature in the presence of cycloheximide, the number of empty capsids present in tsN-infected cells decreased with a concomitant accumulation of full capsids, indicating that empty capsids are precursors to full capsids.  相似文献   

10.
Adenoviruses with nonidentical terminal sequences are viable.   总被引:2,自引:1,他引:1       下载免费PDF全文
R Lipp  F L Graham 《Journal of virology》1989,63(12):5133-5141
Adenovirus genomes consist of linear DNA molecules containing inverted terminal repeat sequences (ITRs) of 100 to 200 base pairs. The importance of identical termini for viability of adenoviruses was investigated. The viral strains used in this study were wild-type adenovirus type 5 (Ad5) and a variant Ad2 strain with termini which were distinct from those of all other human adenoviruses sequenced to date. A hybrid virus (sub54), obtained by recombination between Ad2 and Ad5, derived the left 42 to 52% of its genome from Ad2 and the right 58 to 48% from Ad5. Southern blotting analysis with labeled oligodeoxynucleotides indicated that both Ad2 and Ad5 ITRs were present in sub54 viral DNA preparations, and successive plaque purifications of sub54 demonstrated that viruses with nonidentical terminal sequences were viable but were rapidly converted to viruses with identical ends. Cloning of the sub54 genome as a bacterial plasmid supported the observations made by analysis of sub54 virion DNA. A plasmid, pFG154, was isolated which contained the entire adenovirus genome with an Ad2 ITR at the left terminus covalently linked to an Ad5 ITR at the right terminus. Upon transfection of mammalian cells with pFG154, viral progeny were obtained which had all possible combinations of termini, thus confirming that molecules with nonidentical termini are viable. Pure populations of viruses with nonidentical termini could not be isolated, suggesting efficient repair of one end with the opposite terminus used as a template. A model for this process is proposed involving strand displacement replication and emphasizing the importance of panhandle formation (annealing of terminal sequences) as a replicative intermediate.  相似文献   

11.
Several lines of evidence suggest that empty adenovirus capsids are preassembled intermediates in the pathway of virion assembly. We have observed that purified empty capsids of subgroup B adenoviruses have a remarkable affinity for DNA in vitro. The products of capsid-DNA association are sufficiently stable, once formed in low-salt solution, to permit purification and characterization in CsCl density gradients. Neither virions nor the DNA-containing incomplete particles of subgroup B adenoviruses can give rise to such in vitro reaction products. The average molecular weight of the empty adenovirus capsids is about 123 X 10(6), consistent with the absence of viral core peptides and a small deficiency of exterior shell polypeptides. Electron microscopy of negatively stained capsids and the capsids bound to DNA reveals a typical adenovirus size and architecture. The particles appear with a surface discontinuity that is presumed to expose the DNA binding site(s). The DNA molecules associated with the empty capsids are susceptible to the actions of DNase and restriction endonucleases. The dependence of rate of capsid-DNA association on DNA length suggests randomly distributed binding sites on the DNA molecules. Although the DNA molecules can successively acquire additional empty capsids, the empty particles themselves are restricted to interactionwith only one DNA molecule. Electron microscopy of the capsid-DNA complexes spread in cytochrome c films shows that the particles are bo-nd along the contour of extended duplex DNA. The amount of DNA within each bound particle appears to be less than 300 base pairs, as estimated by the length of the DNA molecules visible outside of the bound particle. The empty capsid-DNA association product described in this report provides an interesting substrate for further investigation of the DNA packaging process in a defined in vitro system, with extracts or purified components from infected cells.  相似文献   

12.
We have examined the functional similarity of the transforming genes for replicative functions among three different subgroups of human adenoviruses (A, B, and C), using mutant complementation as an assay. A host range deletion mutant (dl201.2) of Ad2 (nononcogenic subgroup C) lacking about 5% of the viral DNA covering two early gene blocks (E1a and E1b) involved in cellular transformation was isolated and tested for its ability to replicate in nonpermissive KB cells in the presence of Ad7 (weakly oncogenic group B) or ad12 (highly oncogenic group A). The complementation of the mutant defect was demonstrated by cleaving the viral DNA extracted from mixed infected cells or the DNA extracted from purified virions from mixed infected cells with restriction endonuclease BamHI, which produces a different cleavage pattern with the DNA of each serotype. It was found that the defects in E1a plus E1b of dl201.2 could be complemented by Ad7 and Ad12, indicating that these genes in Ad2, Ad7, and Ad12 have similar functions during productive infection.  相似文献   

13.
The patterns of integration of the viral genome have been analyzed in four hamster cell lines transformed by adenovirus type 12 (Ad12). It has previously been shown that in each of the cell lines HA12/7, T637, A2497-2 and A2497-3, the viral genome persists in multiple copies, and that different parts of the viral DNA are represented non-stoichiometrically (Fanning and Doerfler, 1976). All four cell lines are oncogenic when injected into hamsters.The DNA from each of the cell lines was extracted and cleaved in different experiments with restriction endonucleases Bam HI, Bgl II, Eco RI, Hind III, Hpa II or Sma I. The DNA fragments were separated on 1% agarose slab gels and transferred to nitrocellulose filters by the Southern technique. Ad12 DNA sequences were detected by hybridization to Ad12 DNA, which was 32P-labeled by nick translation, and by subsequent autoradiography. In some experiments, the 32P-labeled Eco RI restriction endonuclease fragments of Ad12 DNA were used to investigate the distribution of specific segments of the viral genome in the cellular DNA.For each cell line, a distinct and specific pattern of integrated viral DNA sequences is observed for each of the restriction endonucleases used. Moreover, viral sequences complementary to the isolated Eco RI restriction endonuclease fragments are also distributed in patterns specific for each cell line. There are striking differences in integration patterns among the four different lines; there are also similarities. Because the organization of cellular genes in virus-transformed as compared to normal cells has not yet been determined, conclusions about the existence or absence of specific integration sites for adenovirus DNA appear premature. Analysis of the integration patterns of Ad12 DNA in the four hamster lines investigated reveals that some of the viral DNA molecules are fragmented prior to or during integration. Analysis with specific restriction endonuclease fragments demonstrates that the Eco RI B, D and E fragments, comprising a contiguous segment from 0.17–0.62 fractional length units of the viral DNA, remain intact during integration in a portion of the viral DNA molecules. Although each cell line carries multiple copies of Ad12 DNA, the viral DNA sequences are concentrated in a small number of distinct size classes of fragments. This finding is compatible with, but does not prove, the notion that at least a portion of the viral DNA sequences is integrated into repetitive sequences, or else that the integrated viral sequences have been amplified after integration.In the three cell lines which were tested, the integration pattern is stable over many generations, with continuous passage-twice weekly-of cells for 6–7 months. In the three cell lines which were examined, the integration pattern is identical in a number of randomly isolated clones. Hence it can be concluded that the patterns of integration are identical among all cells in a population of a given line of transformed cells.  相似文献   

14.
Adenovirus type 7 (Ad7) early region 1 mRNA species transcribed in rat cell lines transformed by the HindIII-I . J fragment (the left 7.8% of the viral genome) and in human KB cells infected with Ad7 were mapped on the viral genome, using S1 nuclease gel and diazobenzyloxymethyl paper hybridization techniques. At the early stage of productive infection, two mRNA's (950 and 840 nucleotides long) with the common 5' and 3' ends but different internal splicings were mapped from region 1A (map units 1.4 to 4.3), and one mRNA (2,310 nucleotides long, with the internal splicing between map units 9.9 to 10.1) was mapped from region 1B (map units 4.6 to 11.4). At the late stage, these early spliced mRNA's were also found and at least three additional Ad7 mRNA's were identified: 700-nucleotide-long mRNA in region 1A; and 1,100- and nucleotide-long mRNA's in region 1B. In transformed rat cell lines, two early region 1A mRNA's (950 and 840 nucleotides long) were also transcribed. Surprisingly, in addition, several unique Ad7 mRNA's, not found in productivity infected cells, were identified in all of the transformed cell lines. Their molecular sizes and coding sequences varied in individual cell lines. However, these mRNA's had the 5' end-proximal portion in region 1B and the 3' end-proximal portion in region 1A, these portions being transcribed by extending from region 1B to 1A on viral DNA fragments joined in a tandem array in transformed cells.  相似文献   

15.
Human adenoviruses (Ads) replicate and assemble particles in the nucleus. They organize a linear double-strand DNA genome into a condensed core with about 180 nucleosomes, by the viral proteins VII (pVII), pX, and pV attaching the DNA to the capsid. Using reverse genetics, we generated a novel, nonconditionally replicating Ad reporter by inserting green fluorescent protein (GFP) at the amino terminus of pV. Purified Ad2-GFP-pV virions had an oversized complete genome and incorporated about 38 GFP-pV molecules per virion, which is about 25% of the pV levels in Ad2. GFP-pV cofractionated with the DNA core, like pV, and newly synthesized GFP-pV had a subcellular localization indistinguishable from that of pV, indicating that GFP-pV is a valid reporter for pV. Ad2-GFP-pV completed the replication cycle, although at lower yields than Ad2. Incoming GFP-pV (or pV) was not imported into the nucleus. Virions lost GFP-pV at two points during the infection process: at entry into the cytosol and at the nuclear pore complex, where capsids disassemble. Disassembled capsids, positive for the conformation-specific antihexon antibody R70, were devoid of GFP-pV. The loss of GFP-pV was reduced by the macrolide antibiotic leptomycin B (LMB), which blocks nuclear export and adenovirus attachment to the nuclear pore complex. LMB inhibited the appearance of R70 epitopes on Ad2 and Ad2-GFP-pV, indicating that the loss of GFP-pV from Ad2-GFP-pV is an authentic step in the adenovirus uncoating program. Ad2-GFP-pV is genetically complete and hence enables detailed analyses of infection and spreading dynamics in cells and model organisms or assessment of oncolytic adenoviral potential.  相似文献   

16.
The integration of DNA of highly oncogenic simian adenovirus type 7 (SA7) and non-oncogenic human adenovirus type 6 (Ad6) into the genome of newborn rat kidney cells transformed by fragmented DNA preparations was studied using reassociation kinetics and spot hybridization. Transforming DNA was fragmented with the specific endonuclease SalI (SA7) and BglII (Ad6). In contrast to the cell transformation by intact viral DNA, transformation by fragmented DNA resulted in integration into the cellular genome of not only the lefthand fragment with the oncogene but also of other regions of the viral genome. Additionally integrated fragments were stable and preserved during numerous passages of cells lines, although they were no expressed, at least in the case of the Ad6-transformed cell line. The integration of the fragments of SA7 DNA was accompanied by loss of 25-50% of the mass of each fragment. Adding the linear form of the pBR322 plasmid to the preparation of transforming Ad6 DNA also contributed to its cointegration into the genome of the transformed cell. This technique of cell cotransformation with any foreign DNAs together with the viral oncogens may be used as an equivalent of an integration vector for eukaryotic cells.  相似文献   

17.
M Kann  A Bischof    W H Gerlich 《Journal of virology》1997,71(2):1310-1316
Hepadnaviruses contain a DNA genome, but they replicate via an RNA intermediate, synthesized by the cellular RNA polymerase II in the nucleus of the infected cell. Thus, nuclear transport of the viral DNA is required in the viral life cycle. Protein-free DNA is only poorly imported into the nucleus, so one or more of the viral proteins must be involved in the transport of the viral genome. In order to identify these viral proteins, we purified woodchuck hepadnavirus (WHV) core particles from infected woodchuck liver, isolated WHV DNA, and extracted the covalent complex of viral polymerase from the particles using urea. Intact core particles, the polymerase-DNA complex, or protein-free WHV DNA from core particles was added to digitonin-permeabilized HuH-7 cells, in which the cytosol was substituted by rabbit reticulocyte lysate (RRL) and an ATP-generating system. The distribution of the viral genome was analyzed by semiquantitative PCR or by hybridization in total nuclei, RRL, nuclear membranes, and nucleoplasm. The polymerase-DNA complex was efficiently transported into the nucleus, as indicated by the resistance of the nucleus-associated DNA to a short-term treatment with DNase I of the intact nuclei. The DNA within core particles stayed mainly in the cytosol and remained protected against DNase I. A minor part of the encapsidated DNA was bound to nuclei. It was protected against DNase I but became accessible after disruption of the nuclei. Deproteinized viral DNA completely remained in the cytosol. These data show that the viral polymerase is probably sufficient for mediating the transport of a hepadnavirus genome into the nucleus and that the viral core particles may release the genome at the nuclear membrane.  相似文献   

18.
The integration patterns of persisting adenovirus type 12 (Ad12) DNA were analyzed in two Ad12-induced tumors of Balb/c and CBA/J mice and in one tumor cell line derived from an Ad12-induced retinoblastoma of C3H origin. In all three tumors the Ad12 genome was integrated colinearly and various copy numbers of viral DNA were found. Analysis of the Ad12 integration patterns revealed relatively simple offsize band patterns regardless of Ad12 copy numbers. The degree of methylation at the 5''-CCGG-3'' sites in the inserted Ad12 genome was determined using the isoschizomeric restriction endonuclease pair HpaII and MspI. Methylation was rather incomplete in the primary tumor tissues but almost complete in the retinoblastoma line carried in culture for many passages. The levels of expression of the viral genome in the Balb/c tumor and in the retinoblastoma line were determined by in vitro translation of RNA isolated from these cells and selected with appropriate restriction endonuclease fragments of Ad12 DNA. In both instances the 59 K, 19 K, and 17 K proteins of the E1b region were expressed. Proteins of the E1a region appeared very faint in the size class between 22 K and 42 K. The permissivity of Ad12 and the replication of Ad12 DNA in mouse cells were investigated by blotting restricted DNA from cells soon after, and a long time after, infection and by hybridization with 32P-labeled Ad12 DNA. Neither primary mouse kidney cells nor the established L929 mouse cell line supported viral DNA replication. These results raise the question to what extent host cell factors determine Ad12 DNA replication in mammalian cells.  相似文献   

19.
Incoming adenovirus type 2 (Ad2) and Ad5 shuttle bidirectionally along microtubules, biased to the microtubule-organizing center by the dynein/dynactin motor complex. It is unknown how the particles reach the nuclear pore complex, where capsids disassemble and viral DNA enters the nucleus. Here, we identified a novel link between nuclear export and microtubule-mediated transport. Two distinct inhibitors of the nuclear export factor CRM1, leptomycin B (LMB) and ratjadone A (RJA) or CRM1-siRNAs blocked adenovirus infection, arrested cytoplasmic transport of viral particles at the microtubule-organizing center or in the cytoplasm and prevented capsid disassembly and nuclear import of the viral genome. In mitotic cells where CRM1 is in the cytoplasm, adenovirus particles were not associated with microtubules but upon LMB treatment, they enriched at the spindle poles implying that CRM1 inhibited microtubule association of adenovirus. We propose that CRM1, a nuclear factor exported by CRM1 or a protein complex containing CRM1 is part of a sensor mechanism triggering the unloading of the incoming adenovirus particles from microtubules proximal to the nucleus of interphase cells.  相似文献   

20.
A peculiar phenomenon is observed in several adenovirus type 2 or 5 (Ad2 or Ad5) transformed cell lines: the right hand and left hand terminal regions of the viral genome present in the viral DNA insertions of these cell lines are found to be linked together. A large part of the viral DNA insertion present in the Ad5 transformed rat cell line 5RK20 has been cloned in the lambda vector Charon21A, including the segment containing the linked terminal regions. Sequence analysis of the linkage region showed a perfect homology with the Ad5 DNA sequence and a direct linkage of basepair (bp) 63 of the left hand end of the viral genome to bp 108 of the right hand end. No cellular or rearranged viral sequences were present. Our findings suggest that the joining of viral sequences into the cellular genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号