首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
On the basis of microarray analyses of the salt‐tolerant wheat mutant RH8706‐49, a previously unreported salt‐induced gene, designated as TaHPS [Triticum aestivum hypothetical (HPS)‐like protein], was cloned. Real‐time quantitative polymerase chain reaction analyses showed that expression of the gene was induced by abscisic acid, salt and drought. The encoded protein was found to be localized mainly in the plasma membranes. Transgenic Arabidopsis plants overexpressing TaHPS were more tolerant to salt and drought stresses than non‐transgenic wild‐type (WT) plants. Under salt stress, the root cells of the transgenic plants secreted more Na+ and guard cells took up more Ca2+ ions. Compared with wild‐type plants, TaHPS‐expressing transgenic plants showed significantly lower amylase activity and glucose and malic acid levels. Our results showed that the expression of TaHPS inhibited amylase activity, which subsequently led to a closure of stomatal apertures and thus improved plant tolerance to salt and drought.  相似文献   

4.
5.
As sessile organisms, plants are constantly challenged by environmental stresses, including drought and high salinity. Among the various abiotic stresses, osmotic stress is one of the most important factors for growth and significantly reduces crop productivity in agriculture. Here, we report a function of the CaLEA1 protein in the defense responses of plants to osmotic stress. Our analyses showed that the CaLEA1 gene was strongly induced in pepper leaves exposed to drought and increased salinity. Furthermore, we determined that the CaLEA1 protein has a late embryogenesis abundant (LEA)_3 homolog domain highly conserved among other known group 5 LEA proteins and is localized in the processing body. We generated CaLEA1‐silenced peppers and CaLEA1‐overexpressing (OX) transgenic Arabidopsis plants to evaluate their responses to dehydration and high salinity. Virus‐induced gene silencing of CaLEA1 in pepper plants conferred enhanced sensitivity to drought and salt stresses, which was accompanied by high levels of lipid peroxidation in dehydrated and NaCl‐treated leaves. CaLEA1‐OX plants exhibited enhanced sensitivity to abscisic acid (ABA) during seed germination and in the seedling stage; furthermore, these plants were more tolerant to drought and salt stress than the wild‐type plants because of enhanced stomatal closure and increased expression of stress‐responsive genes. Collectively, our data suggest that CaLEA1 positively regulates drought and salinity tolerance through ABA‐mediated cell signaling.  相似文献   

6.
7.
The hot pepper xyloglucan endo-trans-gluco-sylase/hydrolase (CaXTH3) gene that was inducible by a broad spectrum of abiotic stresses in hot pepper has been reported to enhance tolerance to drought and high salinity in transgenic Arabidopsis. To assess whether CaXTH3 is a practically useful target gene for improving the stress tolerance of crop plants, we ectopically over-expressed the full-length CaXTH3 cDNA in tomato (Solanum lycopersicum cv. Dotaerang) and found that the 35S:CaXTH3 transgenic tomato plants exhibited a markedly increased tolerance to salt and drought stresses. Transgenic tomato plants exposed to a salt stress of 100 mM NaCl retained the chlorophyll in their leaves and showed normal root elongation. They also remained green and unwithered following exposure to 2 weeks of dehydration. A high proportion of stomatal closures in 35S:CaXTH3 was likely to be conferred by increased cell-wall remodeling activity of CaXTH3 in guard cell, which may reduce transpirational water loss in response to dehydration stress. Despite this increased stress tolerance, the transgenic tomato plants showed no detectable phenotype defects, such as abnormal morphology and growth retardation, under normal growth conditions. These results raise the possibility that CaXTH3 gene is appropriate for application in genetic engineering strategies aimed at improving abiotic stress tolerance in agriculturally and economically valuable crop plants.  相似文献   

8.
9.
Transpiration and gas exchange occur through stomata. Thus, the control of stomatal aperture is important for the efficiency and regulation of water use, and for the response to drought. Here, we demonstrate that SIZ1mediated endogenous salicylic acid (SA) accumulation plays an important role in stomatal closure and drought tolerance. siz1 reduced stomatal apertures. The reduced stomatal apertures of siz1 were inhibited by the application of peroxidase inhibitors, salicylhydroxamic acid and azide, which inhibits SA‐dependent reactive oxygen species (ROS) production, but not by an NADPH oxidase inhibitor, diphenyl iodonium chloride, which inhibits ABA‐dependent ROS production. Furthermore, the introduction of nahG into siz1, which reduces SA accumulation, restored stomatal opening. Stomatal closure is generally induced by water deficit. The siz1 mutation caused drought tolerance, whereas nahG siz1 suppressed the tolerant phenotype. Drought stresses also induced expression of SA‐responsive genes, such as PR1 and PR2. Furthermore, other SA‐accumulating mutants, cpr5 and acd6, exhibited stomatal closure and drought tolerance, and nahG suppressed the phenotype of cpr5 and acd6, as did siz1 and nahG siz1. Together, these results suggest that SIZ1 negatively affects stomatal closure and drought tolerance through the accumulation of SA.  相似文献   

10.
Controversies regarding the function of guard cell chloroplasts and the contribution of mesophyll in stomatal movements have persisted for several decades. Here, by comparing the stomatal opening of guard cells with (crl‐ch) or without chloroplasts (crl‐no ch) in one epidermis of crl (crumpled leaf) mutant in Arabidopsis, we showed that stomatal apertures of crl‐no ch were approximately 65–70% those of crl‐ch and approximately 50–60% those of wild type. The weakened stomatal opening in crl‐no ch could be partially restored by imposing lower extracellular pH. Correspondingly, the external pH changes and K+ accumulations following fusicoccin (FC) treatment were greatly reduced in the guard cells of crl‐no ch compared with crl‐ch and wild type. Determination of the relative ATP levels in individual cells showed that crl‐no ch guard cells contained considerably lower levels of ATP than did crl‐ch and wild type after 2 h of white light illumination. In addition, guard cell ATP levels were lower in the epidermis than in leaves, which is consistent with the observed weaker stomatal opening response to white light in the epidermis than in leaves. These results provide evidence that both guard cell chloroplasts and mesophyll contribute to the ATP source for H+ extrusion by guard cells.  相似文献   

11.
Calcium-dependent protein kinases (CDPKs) are unique serine/threonine kinases in plants and there are 34 CDPKs in Arabidopsis genome alone. Although several CDPKs have been demonstrated to be critical calcium signaling mediators for plant responses to various environmental stresses, the biological functions of most CDPKs in stress signaling remain unclear. In this study, we provide the evidences to demonstrate that AtCPK23 plays important role in Arabidopsis responses to drought and salt stresses. The cpk23 mutant, a T-DNA insertion mutant for AtCPK23 gene, showed greatly enhanced tolerance to drought and salt stresses, while the AtCPK23 overexpression lines became more sensitive to drought and salt stresses and the complementary line of the cpk23 mutant displayed similar phenotype as wild-type plants. The results of stomatal aperture measurement showed that the disruption of AtCPK23 expression reduced stomatal apertures, while overexpression of AtCPK23 increased stomatal apertures. The alteration of stomatal apertures by changes in AtCPK23 expression may account, at least in partial, for the modified Arabidopsis response to drought stress. In consistent with the enhanced salt-tolerance by disruption of AtCPK23 expression, K+ content in the cpk23 mutant was not reduced under high NaCl stress compared with wild-type plants, which indicates that the AtCPK23 may also regulate plant K+-uptake. The possible mechanisms by which AtCPK23 mediates drought and salt stresses signaling are discussed.  相似文献   

12.
The genetic regulation of stomatal movement mainly depends on an efficient control system of gene expression, and guard cell-specific promoter is becoming the best choice. Here we combined the dehydration responsive element (DRE) with guard cell specific element (GCSE) to construct a novel promoter, DGP1. Histochemical assays in transgenic tobacco carryingβ-glucuronidase (gus) gene fused to DGP1 demonstrated that GUS activity was found to be highly inducible by drought treatment and specifically restricted to guard cells. No GUS activity was detected in roots, stems or flowers after treatment. Further quantitative analysis showed that GUS activity in the epidermal strips was apparently induced by dehydration and dramatically increased with the elongation of treatment. The GUS activity after 8 h treatment was 179 times that of those without treatment. Although GUS activity in roots, stems or mesophyll increased after treatment, no great changes were observed. These results suggested that DGP1 could drive target gene expressed in guard cells when plant is subjected to drought stress. And this gets us prepared to control opening and closing of stomata through plant gene engineering.  相似文献   

13.
Arabidopsis thaliana acyl‐CoA‐binding protein 2 (ACBP2) is a stress‐responsive protein that is also important in embryogenesis. Here, we assign a role for ACBP2 in abscisic acid (ABA) signalling during seed germination, seedling development and the drought response. ACBP2 was induced by ABA and drought, and transgenic Arabidopsis overexpressing ACBP2 (ACBP2‐OXs) showed increased sensitivity to ABA treatment during germination and seedling development. ACBP2‐OXs also displayed improved drought tolerance and ABA‐mediated reactive oxygen species (ROS) production in guard cells, thereby promoting stomatal closure, reducing water loss and enhancing drought tolerance. In contrast, acbp2 mutant plants showed decreased sensitivity to ABA in root development and were more sensitive to drought stress. RNA analyses revealed that ACBP2 overexpression up‐regulated the expression of Respiratory Burst Oxidase Homolog D (AtrbohD) and AtrbohF, two NAD(P)H oxidases essential for ABA‐mediated ROS production, whereas the expression of Hypersensitive to ABA1 (HAB1), an important negative regulator in ABA signalling, was down‐regulated. In addition, transgenic plants expressing ACBP2pro:GUS showed beta‐glucuronidase (GUS) staining in guard cells, confirming a role for ACBP2 at the stomata. These observations support a positive role for ACBP2 in promoting ABA signalling in germination, seedling development and the drought response.  相似文献   

14.
Plants have evolved elaborate mechanisms to perceive and integrate signals from various environmental conditions.On leaf surface,stomata formed by pairs of guard cells mediate gas exchange,water transp...  相似文献   

15.
16.
The vesicle‐trafficking protein SYP121 (SYR1/PEN1) was originally identified in association with ion channel control at the plasma membrane of stomatal guard cells, although stomata of the Arabidopsis syp121 loss‐of‐function mutant close normally in ABA and high Ca2+. We have now uncovered a set of stomatal phenotypes in the syp121 mutant that reduce CO2 assimilation, slow vegetative growth and increase water use efficiency in the whole plant, conditional upon high light intensities and low relative humidity. Stomatal opening and the rise in stomatal transpiration of the mutant was delayed in the light and following Ca2+‐evoked closure, consistent with a constitutive form of so‐called programmed stomatal closure. Delayed reopening was observed in the syp121, but not in the syp122 mutant lacking the homologous gene product; the delay was rescued by complementation with wild‐type SYP121 and was phenocopied in wild‐type plants in the presence of the vesicle‐trafficking inhibitor Brefeldin A. K+ channel current that normally mediates K+ uptake for stomatal opening was suppressed in the syp121 mutant and, following closure, its recovery was slowed compared to guard cells of wild‐type plants. Evoked stomatal closure was accompanied by internalisation of GFP‐tagged KAT1 K+ channels in both wild‐type and syp121 mutant guard cells, but their subsequently recycling was slowed in the mutant. Our findings indicate that SYP121 facilitates stomatal reopening and they suggest that K+ channel traffic and recycling to the plasma membrane underpins the stress memory phenomenon of programmed closure in stomata. Additionally, they underline the significance of vesicle traffic for whole‐plant water use and biomass production, tying SYP121 function to guard cell membrane transport and stomatal control.  相似文献   

17.
Stomatal opening and closing are driven by ion fluxes that cause changes in guard cell turgor and volume. This process is, in turn, regulated by environmental and hormonal signals, including light and the phytohormone abscisic acid (ABA). Here, we present genetic evidence that expression of PHO1 in guard cells of Arabidopsis thaliana is required for full stomatal responses to ABA. PHO1 is involved in the export of phosphate into the root xylem vessels and, as a result, the pho1 mutant is characterized by low shoot phosphate levels. In leaves, PHO1 was found expressed in guard cells and up‐regulated following treatment with ABA. The pho1 mutant was unaffected in production of reactive oxygen species following ABA treatment, and in stomatal movements in response to light cues, high extracellular calcium, auxin, and fusicoccin. However, stomatal movements in response to ABA treatment were severely impaired, both in terms of induction of closure and inhibition of opening. Micro‐grafting a pho1 shoot scion onto wild‐type rootstock resulted in plants with normal shoot growth and phosphate content, but failed to restore normal stomatal response to ABA treatment. PHO1 knockdown using RNA interference specifically in guard cells of wild‐type plants caused a reduced stomatal response to ABA. In agreement, specific expression of PHO1 in guard cells of pho1 plants complemented the mutant guard cell phenotype and re‐established ABA sensitivity, although full functional complementation was dependent on shoot phosphate sufficiency. Together, these data reveal an important role for phosphate and the action of PHO1 in the stomatal response to ABA.  相似文献   

18.
19.
Stomatal pores on the surface of leaf are gate-ways of gas exchange between plants and environment. For example, plants can take in CO2 via photosynthe-sis and lose water by transpiration. It was estimated that plants account for around 65% fresh water use every year, which was mainly lost through stomata[1]. So they attracted much more attention to increase the ability of drought resistance by regulating stomatal movement. Then a tentative plan came to our brains, is it possible for us to as…  相似文献   

20.
Stomatal pores formed by a pair of guard cells in the leaf epidermis control gas exchange and transpirational water loss. Stomatal closure is mediated by the release of potassium and anions from guard cells. Anion efflux from guard cells involves slow (S‐type) and rapid (R‐type) anion channels. Recently the SLAC1 gene has been shown to encode the slow, voltage‐independent anion channel component in guard cells. In contrast, the R‐type channel still awaits identification. Here, we show that AtALMT12, a member of the aluminum activated malate transporter family in Arabidopsis, represents a guard cell R‐type anion channel. AtALMT12 is highly expressed in guard cells and is targeted to the plasma membrane. Plants lacking AtALMT12 are impaired in dark‐ and CO2‐induced stomatal closure, as well as in response to the drought‐stress hormone abscisic acid. Patch‐clamp studies on guard cell protoplasts isolated from atalmt12 mutants revealed reduced R‐type currents compared with wild‐type plants when malate is present in the bath media. Following expression of AtALMT12 in Xenopus oocytes, voltage‐dependent anion currents reminiscent to R‐type channels could be activated. In line with the features of the R‐type channel, the activity of heterologously expressed AtALMT12 depends on extracellular malate. Thereby this key metabolite and osmolite of guard cells shifts the threshold for voltage activation of AtALMT12 towards more hyperpolarized potentials. R‐Type channels, like voltage‐dependent cation channels in nerve cells, are capable of transiently depolarizing guard cells, and thus could trigger membrane potential oscillations, action potentials and initiate long‐term anion and K+ efflux via SLAC1 and GORK, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号