首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N‐linked glycosylation is an essential protein modification that helps protein folding, trafficking and translocation in eukaryotic systems. The initial process for N‐linked glycosylation shares a common pathway with assembly of a dolichol‐linked core oligosaccharide. Here we characterize a new Arabidopsis thaliana mutant lew3 (leaf wilting 3), which has a defect in an α‐1,2‐mannosyltransferase, a homolog of ALG11 in yeast, that transfers mannose to the dolichol‐linked core oligosaccharide in the last two steps on the cytosolic face of the ER in N‐glycan precursor synthesis. LEW3 is localized to the ER membrane and expressed throughout the plant. Mutation of LEW3 caused low‐level accumulation of Man3GlcNAc2 and Man4GlcNAc2 glycans, structures that are seldom detected in wild‐type plants. In addition, the lew3 mutant has low levels of normal high‐mannose‐type glycans, but increased levels of complex‐type glycans. The lew3 mutant showed abnormal developmental phenotypes, reduced fertility, impaired cellulose synthesis, abnormal primary cell walls, and xylem collapse due to disturbance of the secondary cell walls. lew3 mutants were more sensitive to osmotic stress and abscisic acid (ABA) treatment. Protein N‐glycosylation was reduced and the unfolded protein response was more activated by osmotic stress and ABA treatment in the lew3 mutant than in the wild‐type. These results demonstrate that protein N‐glycosylation plays crucial roles in plant development and the response to abiotic stresses.  相似文献   

2.
Auxin flow is important for different root developmental processes such as root formation, emergence, elongation and gravitropism. However, the detailed information about the mechanisms regulating the auxin flow is less well understood in rice. We characterized the auxin transport‐related mutants, Ospin‐formed2‐1 (Ospin2‐1) and Ospin2‐2, which exhibited curly root phenotypes and altered lateral root formation patterns in rice. The OsPIN2 gene encodes a member of the auxin efflux carrier proteins that possibly regulates the basipetal auxin flow from the root tip toward the root elongation zone. According to DR5‐driven GUS expression, there is an asymmetric auxin distribution in the mutants that corresponded with the asymmetric cell elongation pattern in the mutant root tip. Auxin transport inhibitor, N‐1‐naphthylphthalamic acid and Ospin2‐1 Osiaa13 double mutant rescued the curly root phenotype indicating that this phenotype results from a defect in proper auxin distribution. The typical curly root phenotype was not observed when Ospin2‐1 was grown in distilled water as an alternative to tap water, although higher auxin levels were found at the root tip region of the mutant than that of the wild‐type. Therefore, the lateral root formation zone in the mutant was shifted basipetally compared with the wild‐type. These results reflect that an altered auxin flow in the root tip region is responsible for root elongation growth and lateral root formation patterns in rice.  相似文献   

3.
4.
Lateral roots (LRs) determine the overall root system architecture, thus enabling plants to efficiently explore their underground environment for water and nutrients. However, the mechanisms regulating LR development are poorly understood in monocotyledonous plants. We characterized a rice mutant, wavy root elongation growth 1 (weg1), that produced higher number of long and thick LRs (L-type LRs) formed from the curvatures of its wavy parental roots caused by asymmetric cell growth in the elongation zone. Consistent with this phenotype, was the expression of the WEG1 gene, which encodes a putative member of the hydroxyproline-rich glycoprotein family that regulates cell wall extensibility, in the root elongation zone. The asymmetric elongation growth in roots is well known to be regulated by auxin, but we found that the distribution of auxin at the apical region of the mutant and the wild-type roots was symmetric suggesting that the wavy root phenotype in rice is independent of auxin. However, the accumulation of auxin at the convex side of the curvatures, the site of L-type LR formation, suggested that auxin likely induced the formation of L-type LRs. This was supported by the need of a high amount of exogenous auxin to induce the formation of L-type LRs. These results suggest that the MNU-induced weg1 mutated gene regulates the auxin-independent parental root elongation that controls the number of likely auxin-induced L-type LRs, thus reflecting its importance in improving rice root architecture.  相似文献   

5.
Studies of protein N‐glycosylation are important for answering fundamental questions on the diverse functions of glycoproteins in plant growth and development. Here we generated and characterised a comprehensive collection of Lotus japonicusLORE1 insertion mutants, each lacking the activity of one of the 12 enzymes required for normal N‐glycan maturation in the glycosylation machinery. The inactivation of the individual genes resulted in altered N‐glycan patterns as documented using mass spectrometry and glycan‐recognising antibodies, indicating successful identification of null mutations in the target glyco‐genes. For example, both mass spectrometry and immunoblotting experiments suggest that proteins derived from the α1,3‐fucosyltransferase (Lj3fuct) mutant completely lacked α1,3‐core fucosylation. Mass spectrometry also suggested that the Lotus japonicus convicilin 2 was one of the main glycoproteins undergoing differential expression/N‐glycosylation in the mutants. Demonstrating the functional importance of glycosylation, reduced growth and seed production phenotypes were observed for the mutant plants lacking functional mannosidase I, N‐acetylglucosaminyltransferase I, and α1,3‐fucosyltransferase, even though the relative protein composition and abundance appeared unaffected. The strength of our N‐glycosylation mutant platform is the broad spectrum of resulting glycoprotein profiles and altered physiological phenotypes that can be produced from single, double, triple and quadruple mutants. This platform will serve as a valuable tool for elucidating the functional role of protein N‐glycosylation in plants. Furthermore, this technology can be used to generate stable plant mutant lines for biopharmaceutical production of glycoproteins displaying relative homogeneous and mammalian‐like N‐glycosylation features.  相似文献   

6.
Manufacturers worldwide produce influenza vaccines in different host systems. So far, either fertilized chicken eggs or mammalian cell lines are used. In all these vaccines, hemagglutinin (HA) and neuraminidase are the major components. Both are highly abundant glycoproteins in the viral envelope, and particularly HA is able to induce a strong and protective immune response. The quality characteristics of glycoproteins, such as specific activity, antigenicity, immunogenicity, binding avidity, and receptor‐binding specificity can strongly depend on changes or differences in their glycosylation pattern (potential N‐glycosylation occupancy as well as glycan composition). In this study, capillary gel electrophoresis with laser‐induced fluorescence detection (CGE‐LIF) based glycoanalysis (N‐glycan fingerprinting) was used to determine the impact of cultivation conditions on the HA N‐glycosylation pattern of Madin–Darby canine kidney (MDCK) cell‐derived influenza virus A PR/8/34 (H1N1). We found that adaptation of adherent cells to serum‐free growth has only a minor impact on the HA N‐glycosylation pattern. Only relative abundances of N‐glycan structures are affected. In contrast, host cell adaptation to serum‐free suspension growth resulted in significant changes in the HA N‐glycosylation pattern regarding the presence of specific N‐glycans as well as their abundance. Further controls such as different suppliers for influenza virus A PR/8/34 (H1N1) seed strains, different cultivation scales and vessels in standard or high cell density mode, different virus production media varying in either composition or trypsin activity, different temperatures during virus replication and finally, the impact of β‐propiolactone inactivation resulted—at best—only in minor changes in the relative N‐glycan structure abundances of the HA N‐glycosylation pattern. Surprisingly, these results demonstrate a rather stable HA N‐glycosylation pattern despite various (significant) changes in upstream processing. Only the adaptation of the production host cell line to serum‐free suspension growth significantly influenced HA N‐glycosylation regarding both, the type of attached glycan structures as well as their abundances. Biotechnol. Bioeng. 2013; 110: 1691–1703. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
To explore the physiological significance of N‐glycan maturation in the plant Golgi apparatus, gnt1, a mutant with loss of N‐acetylglucosaminyltransferase I (GnTI) function, was isolated in Oryza sativa. gnt1 exhibited complete inhibition of N‐glycan maturation and accumulated high‐mannose N‐glycans. Phenotypic analyses revealed that gnt1 shows defective post‐seedling development and incomplete cell wall biosynthesis, leading to symptoms such as failure in tiller formation, brittle leaves, reduced cell wall thickness, and decreased cellulose content. The developmental defects of gnt1 ultimately resulted in early lethality without transition to the reproductive stage. However, callus induced from gnt1 seeds could be maintained for periods, although it exhibited a low proliferation rate, small size, and hypersensitivity to salt stress. Shoot regeneration and dark‐induced leaf senescence assays indicated that the loss of GnTI function results in reduced sensitivity to cytokinin in rice. Reduced expression of A‐type O. sativa response regulators that are rapidly induced by cytokinins in gnt1 confirmed that cytokinin signaling is impaired in the mutant. These results strongly support the proposed involvement of N‐glycan maturation in transport as well as in the function of membrane proteins that are synthesized via the endomembrane system.  相似文献   

8.
Auxins control growth and development in plants, including lateral rootinitiation and root gravity response. However, how endogenous auxin regulatesthese processes is poorly understood. In this study, the effects of auxins onlateral root initiation and root gravity response in rice were investigatedusing a lateral rootless mutant Lrt1, which fails to formlateral roots and shows a reduced root gravity response. Exogenous applicationof IBA to the Lrt1 mutant restored both lateral rootinitiation and root gravitropism. However, application of IAA, a major form ofnatural auxin, restored only root gravitropic response but not lateral rootinitiation. These results suggest that IBA is more effective than IAA in lateralroot formation and that IBA also plays an important role in root gravitropicresponse in rice. The application of NAA restored lateral root initiation, butdid not completely restore root gravitropism. Root elongation assays ofLrt1 displayed resistance to 2,4-D, NAA, IBA, and IAA.This result suggests that the reduced sensitivity to exogenous auxins may be due tothe altered auxin activity in the root, thereby affecting root morphology inLrt1.  相似文献   

9.
Seed‐specific expression is an appealing alternative technology for the production of recombinant proteins in transgenic plants. Whereas attractive yields of recombinant proteins have been achieved by this method, little attention has been paid to the intracellular deposition and the quality of such products. Here, we demonstrate a comparative study of two antiviral monoclonal antibodies (mAbs) (HA78 against Hepatitis A virus; 2G12 against HIV) expressed in seeds of Arabidopsis wild‐type (wt) plants and glycosylation mutants lacking plant specific N‐glycan residues. We demonstrate that 2G12 is produced with complex N‐glycans at great uniformity in the wt as well as in the glycosylation mutant, carrying a single dominant glycosylation species, GnGnXF and GnGn, respectively. HA78 in contrast, contains additionally to complex N‐glycans significant amounts of oligo‐mannosidic structures, which are typical for endoplasmic reticulum (ER)‐retained proteins. A detailed subcellular localization study demonstrated the deposition of both antibodies virtually exclusively in the extracellular space, illustrating their efficient secretion. In addition, although a KDEL‐tagged version of 2G12 exhibited an ER‐typical N‐glycosylation pattern, it was surprisingly detected in protein storage vacuoles. The different antibody variants showed different levels of degradation with hardly any degradation products detectable for HA78 carrying GnGnXF glycans. Finally, we demonstrate functional integrity of the HA78 and 2G12 glycoforms using viral inhibition assays. Our data therefore demonstrate the usability of transgenic seeds for the generation of mAbs with a controlled N‐glycosylation pattern, thus expanding the possibilities for the production of optimally glycosylated proteins with enhanced biological activities for the use as human therapeutics.  相似文献   

10.
Lateral root (LR) formation is important for the establishment of root architecture in higher plants. Recent studies have revealed that LR formation is regulated by an auxin signaling pathway that depends on auxin response factors ARF7 and ARF19, and auxin/indole‐3‐acetic acid (Aux/IAA) proteins including SOLITARY‐ROOT (SLR)/IAA14. To understand the molecular mechanisms of LR formation, we isolated a recessive mutant rlf (reduced lateral root formation) in Arabidopsis thaliana. The rlf‐1 mutant showed reduction of not only emerged LRs but also LR primordia. Analyses using cell‐cycle markers indicated that the rlf‐1 mutation inhibits the first pericycle cell divisions involved in LR initiation. The rlf‐1 mutation did not affect auxin‐induced root growth inhibition but did affect LR formation over a wide range of auxin concentrations. However, the rlf‐1 mutation had almost no effect on auxin‐inducible expression of LATERAL ORGAN BOUNDARIES‐DOMAIN16/ASYMMETRIC LEAVES2‐LIKE18 (LBD16/ASL18) and LBD29/ASL16 genes, which are downstream targets of ARF7/19 for LR formation. These results indicate that ARF7/19‐mediated auxin signaling is not blocked by the rlf‐1 mutation. We found that the RLF gene encodes At5g09680, a protein with a cytochrome b5‐like heme/steroid binding domain. RLF is ubiquitously expressed in almost all organs, and the protein localizes in the cytosol. These results, together with analysis of the genetic interaction between the rlf‐1 and arf7/19 mutations, indicate that RLF is a cytosolic protein that positively controls the early cell divisions involved in LR initiation, independent of ARF7/19‐mediated auxin signaling.  相似文献   

11.
Nine phosphatidylinositol‐specific phospholipases C (PLCs) have been identified in the Arabidopsis genome; among the importance of PLC2 in reproductive development is significant. However, the role of PLC2 in vegetative development such as in root growth is elusive. Here, we report that plc2 mutants displayed multiple auxin‐defective phenotypes in root development, including short primary root, impaired root gravitropism, and inhibited root hair growth. The DR5:GUS expression and the endogenous indole‐3‐acetic acid (IAA) content, as well as the responses of a set of auxin‐related genes to exogenous IAA treatment, were all decreased in plc2 seedlings, suggesting the influence of PLC2 on auxin accumulation and signalling. The root elongation of plc2 mutants was less sensitive to the high concentration of exogenous auxins, and the application of 1‐naphthaleneacetic acid or the auxin transport inhibitor N‐1‐naphthylphthalamic acid could rescue the root hair growth of plc2 mutants. In addition, the PIN2 polarity and cycling in plc2 root epidermis cells were altered. These results demonstrate a critical role of PLC2 in auxin‐mediated root development in Arabidopsis, in which PLC2 influences the polar distribution of PIN2.  相似文献   

12.
Auxin and cadmium (Cd) stress play critical roles during root development. There are only a few reports on the mechanisms by which Cd stress influences auxin homeostasis and affects primary root (PR) and lateral root (LR) development, and almost nothing is known about how auxin and Cd interfere with root hair (RH) development. Here, we characterize rice osaux1 mutants that have a longer PR and shorter RHs in hydroponic culture, and that are more sensitive to Cd stress compared to wild‐type (Dongjin). OsAUX1 expression in root hair cells is different from that of its paralogous gene, AtAUX1, which is expressed in non‐hair cells. However, OsAUX1, like AtAUX1, localizes at the plasma membrane and appears to function as an auxin tranporter. Decreased auxin distribution and contents in the osaux1 mutant result in reduction of OsCyCB1;1 expression and shortened PRs, LRs and RHs under Cd stress, but may be rescued by treatment with the membrane‐permeable auxin 1‐naphthalene acetic acid. Treatment with the auxin transport inhibitors 1‐naphthoxyacetic acid and N‐1‐naphthylphthalamic acid increased the Cd sensitivity of WT rice. Cd contents in the osaux1 mutant were not altered, but reactive oxygen species‐mediated damage was enhanced, further increasing the sensitivity of the osaux1 mutant to Cd stress. Taken together, our results indicate that OsAUX1 plays an important role in root development and in responses to Cd stress.  相似文献   

13.
14.
15.
Screening of commercially available fluoro monosaccharides as putative growth inhibitors in Arabidopsis thaliana revealed that 2‐fluoro 2‐l ‐fucose (2F‐Fuc) reduces root growth at micromolar concentrations. The inability of 2F‐Fuc to affect an Atfkgp mutant that is defective in the fucose salvage pathway indicates that 2F‐Fuc must be converted to its cognate GDP nucleotide sugar in order to inhibit root growth. Chemical analysis of cell wall polysaccharides and glycoproteins demonstrated that fucosylation of xyloglucans and of N‐linked glycans is fully inhibited by 10 μm 2F‐Fuc in Arabidopsis seedling roots, but genetic evidence indicates that these alterations are not responsible for the inhibition of root development by 2F‐Fuc. Inhibition of fucosylation of cell wall polysaccharides also affected pectic rhamnogalacturonan‐II (RG‐II). At low concentrations, 2F‐Fuc induced a decrease in RG‐II dimerization. Both RG‐II dimerization and root growth were partially restored in 2F‐Fuc‐treated seedlings by addition of boric acid, suggesting that the growth phenotype caused by 2F‐Fuc was due to a deficiency of RG‐II dimerization. Closer investigation of the 2F‐Fuc‐induced growth phenotype demonstrated that cell division is not affected by 2F‐Fuc treatments. In contrast, the inhibitor suppressed elongation of root cells and promoted the emergence of adventitious roots. This study further emphasizes the importance of RG‐II in cell elongation and the utility of glycosyltransferase inhibitors as new tools for studying the functions of cell wall polysaccharides in plant development. Moreover, supplementation experiments with borate suggest that the function of boron in plants might not be restricted to RG‐II cross‐linking, but that it might also be a signal molecule in the cell wall integrity‐sensing mechanism.  相似文献   

16.
Asparagine (N)-linked glycosylation regulates numerous cellular activities, such as glycoprotein quality control, intracellular trafficking, and cell-cell communications. In eukaryotes, the glycosylation reaction is catalyzed by oligosaccharyltransferase (OST), a multimembrane protein complex that is localized in the endoplasmic reticulum (ER). During N-glycosylation in the ER, the protein-unbound form of oligosaccharides (free oligosaccharides; fOSs), which is structurally related to N-glycan, is released into the ER lumen. However, the enzyme responsible for this process remains unidentified. Here, we demonstrate that eukaryotic OST generates fOSs. Biochemical and genetic analyses using mutant strains of Saccharomyces cerevisiae revealed that the generation of fOSs is tightly correlated with the N-glycosylation activity of OST. Furthermore, we present evidence that the purified OST complex can generate fOSs by hydrolyzing dolichol-linked oligosaccharide, the glycan donor substrate for N-glycosylation. The heterologous expression of a single subunit of OST from the protozoan Leishmania major in S. cerevisiae demonstrated that this enzyme functions both in N-glycosylation and generation of fOSs. This study provides insight into the mechanism of PNGase-independent formation of fOSs.  相似文献   

17.
Arabinogalactan proteins (AGPs) are plant‐specific extracellular glycoproteins implicated in a variety of processes during growth and development. AGP biosynthesis involves O‐galactosylation of hydroxyproline (Hyp) residues followed by a stepwise elongation of the complex sugar chains. However, functionally dominant Hyp O‐galactosyltransferases, such that their disruption produces phenocopies of AGP‐deficient mutants, remain to be identified. Here, we purified and identified three potent Hyp O‐galactosyltransferases, HPGT1, HPGT2 and HPGT3, from Arabidopsis microsomal fractions. Loss‐of‐function analysis indicated that approximately 90% of the endogenous Hyp O‐galactosylation activity is attributable to these three enzymes. AGP14 expressed in the triple mutant migrated much faster on SDS‐PAGE than when expressed in wild‐type, confirming a considerable decrease in levels of glycosylation of AGPs in the mutant. Loss‐of‐function mutant plants exhibited a pleiotropic phenotype of longer lateral roots, longer root hairs, radial expansion of the cells in the root tip, small leaves, shorter inflorescence stems, reduced fertility and shorter siliques. Our findings provide genetic evidence that Hyp‐linked arabinogalactan polysaccharide chains are critical for AGP function and clues to how arabinogalactan moieties of AGPs contribute to cell‐to‐cell communication during plant growth and development.  相似文献   

18.
We investigated the relationship between the blue light receptor phototropin 1 (phot1) and lateral root growth in Arabidopsis thaliana seedlings. Fluorescence and confocal microscopy images, as well as PHOT1 mRNA expression studies provide evidence that it is highly expressed in the elongation zone of lateral roots where auxin is accumulating. However, treatment with the auxin transport inhibitor N‐1‐naphthylphthalamic acid significantly reduced PHOT1 expression in this zone. In addition, PHOT1 expression was higher in darkness than in light. The total number of lateral roots was higher in the phot1 mutant than in wild‐type Arabidopsis. Cells in the elongation zone of lateral roots of the phot1 mutant were longer than those of wild‐type lateral roots. These findings suggest that PHOT1 plays a role(s) in elongation of lateral roots through the control of an auxin‐related signalling pathway.  相似文献   

19.
Mutants in rice (Oryza sativa L. cv. japonica) were used to study the role of the cytoskeleton in signal-dependent morphogenesis. Mutants obtained by gamma ray irradiation were selected that failed to show inhibition of coleoptile elongation by the antimicrotubular drug ethyl-N-phenylcarbamate (EPC). The mutation EPC-Resistant 31 (ER31), isolated from such a screen, caused lethality in putatively homozygous embryos. Heterozygotes exhibited drug resistance, impaired development of crown roots, and characteristic changes in the pattern of cell elongation: cell elongation was enhanced in mesocotyls and leaf sheaths, but inhibited in coleoptiles. The orientation of cortical microtubules changed correspondingly: for etiolated seedlings, compared with the wild-type, they were more transverse with respect to the long cell axis in mesocotyls and leaf sheaths, but more longitudinal in coleoptiles. In mutant coleoptiles, in contrast to wild-type, microtubules did not reorient in response to auxin, and their response to microtubule-eliminating and microtubule-stabilizing drugs was conspicuously reduced. In contrast, they responded normally to other stimuli such as gibberellins or red light. Auxin sensitivity as assayed by the dose-response for callus induction did not show any significant differences between wild-type and mutant. The mutant phenotype is interpreted in terms of an interrupted link between auxin-triggered signal transduction and microtubule reorientation.  相似文献   

20.
In plants, the plasticity of root architecture in response to nitrogen availability largely determines nitrogen acquisition efficiency. One poorly understood root growth response to low nitrogen availability is an observed increase in the number and length of lateral roots (LRs). Here, we show that low nitrogen‐induced Arabidopsis LR growth depends on the function of the auxin biosynthesis gene TAR2 (tryptophan aminotransferase related 2). TAR2 was expressed in the pericycle and the vasculature of the mature root zone near the root tip, and was induced under low nitrogen conditions. In wild type plants, low nitrogen stimulated auxin accumulation in the non‐emerged LR primordia with more than three cell layers and LR emergence. Conversely, these low nitrogen‐mediated auxin accumulation and root growth responses were impaired in the tar2‐c null mutant. Overexpression of TAR2 increased LR numbers under both high and low nitrogen conditions. Our results suggested that TAR2 is required for reprogramming root architecture in response to low nitrogen conditions. This finding suggests a new strategy for improving nitrogen use efficiency through the engineering of TAR2 expression in roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号