首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The phylogeny of the Afro-Asian Lorisoidea is controversial. While postcranial data attest strongly to the monophyly of the Lorisidae, most molecular analyses portray them as paraphyletic and group the Galagidae alternately with the Asian or African lorisids. One of the problems that has bedevilled phylogenetic analysis of the group in the past is the limited number of taxa sampled for both ingroup families. We present the results of a series of phylogenetic analyses based on 635 base pairs (bp) from two mitochondrial genes (12S and 16S rRNA) with and without 36 craniodental characters, for 11 galagid and five lorisid taxa. The outgroup was the gray mouse lemur (Microcebus murinus). Analyses of the molecular data included maximum parsimony (MP), neighbor joining (NJ), maximum likelihood (ML), and Bayesian methods. The model-based analyses and the combined "molecules+morphology" analyses supported monophyly of the Lorisidae and Galagidae. The lorisids form two geographically defined clades. We find no support for the taxonomy of Galagidae as proposed recently by Groves [Primate Taxonomy, Washington, DC: Smithsonian Institution Press. 350 p, 2001]. The taxonomy of Nash et al. [International Journal of Primatology 10:57-80, 1989] is supported by the combined "molecules+morphology" analysis; however, the model-based analyses suggest that Galagoides may be an assemblage of species united by plesiomorphic craniodental characters.  相似文献   

2.
We assessed phylogenetic relationships within Serpulidae (including Spirorbinae) using parsimony and Bayesian analyses of 18S rDNA, the D1 and D9−D10 regions of 28S rDNA, and 38 morphological characters. In total, 857 parsimony informative characters were used for 31 terminals, 29 serpulids and sabellid and sabellariid outgroups. Following ILD assessment the two sequence partitions and morphology were analysed separately and in combination. The morphological parsimony analysis was congruent with the results of the 2003 preliminary analysis by Kupriyanova in suggesting that a monophyletic Serpulinae and Spirorbinae form a clade, while the remaining serpulids form a basal grade comprising what are normally regarded as Filograninae. Bremer support values were, however, quite low throughout. In contrast, the combined analyses of molecular and morphological data sets provided highly resolved and well-supported trees, though with some conflict when compared to the morphology-only analysis. Spirorbinae was recovered as a sister group to a monophyletic group comprising both 'filogranin' taxa ( Salmacina , Filograna , Protis , and Protula ) and 'serpulin' taxa such as Chitinopoma , Metavermilia , and Vermiliopsis . Thus the traditionally formulated subfamilies Serpulinae and Filograninae are not monophyletic. This indicates that a major revision of serpulid taxonomy is needed at the more inclusive taxonomic levels. We refrain from doing so based on the present analyses since we feel that further taxon sampling and molecular sequencing are required. The evolution of features such as the operculum and larval development are discussed.  相似文献   

3.
Abstract Dictyoptera, comprising Blattaria, Isoptera, and Mantodea, are diverse in appearance and life history, and are strongly supported as monophyletic. We downloaded COII, 16S, 18S, and 28S sequences of 39 dictyopteran species from GenBank. Ribosomal RNA sequences were aligned manually with reference to secondary structure. We included morphological data (maximum of 175 characters) for 12 of these taxa and for an additional 15 dictyopteran taxa (for which we had only morphological data). We had two datasets, a 59‐taxon dataset with five outgroup taxa, from Phasmatodea (2 taxa), Mantophasmatodea (1 taxon), Embioptera (1 taxon), and Grylloblattodea (1 taxon), and a 62‐taxon dataset with three additional outgroup taxa from Plecoptera (1 taxon), Dermaptera (1 taxon) and Orthoptera (1 taxon). We analysed the combined molecular?morphological dataset using the doublet and MK models in Mr Bayes , and using a parsimony heuristic search in paup . Within the monophyletic Mantodea, Mantoida is recovered as sister to the rest of Mantodea, followed by Chaeteessa; the monophyly of most of the more derived families as defined currently is not supported. We recovered novel phylogenetic hypotheses about the taxa within Blattodea (following Hennig, containing Isoptera). Unique to our study, one Bayesian analysis places Polyphagoidea as sister to all other Dictyoptera; other analyses and/or the addition of certain orthopteran sequences, however, place Polyphagoidea more deeply within Dictyoptera. Isoptera falls within the cockroaches, sister to the genus Cryptocercus. Separate parsimony analyses of independent gene fragments suggest that gene selection is an important factor in tree reconstruction. When we varied the ingroup taxa and/or outgroup taxa, the internal dictyopteran relationships differed in the position of several taxa of interest, including Cryptocercus, Polyphaga, Periplaneta and Supella. This provides further evidence that the choice of both outgroup and ingroup taxa greatly affects tree topology.  相似文献   

4.
Some fifteen taxa ranked as species or subspecies have generally been recognized within Secale. However, most of these seem impossible to separate on morphology alone. Based on 14 morphological characters considered of diagnostic value and scored on 44 specimens representing most of the taxa a Principal Components Analysis (PCA) was carried out. Limited correlation was found between the characters and consequently the first three principal axes account for only about 60% of the total variation. The PCA shows only a weak separation of annual and perennial taxa. Further analyses mainly of spikelet characters support merging of most of the previously accepted taxa within each of these two groups. A total of three species with five infraspecific taxa are here proposed within the genus and a key is provided to the taxa.  相似文献   

5.
Within the Polyceridae, Nembrothinae includes some of the most striking and conspicuous sea slugs known, although several features of their biology and phylogenetic relationships remain unknown. This paper reports a phylogenetic analysis based on partial sequences of two mitochondrial genes (cytochrome c oxidase subunit I and 16S rRNA) and morphology for most species included in Nembrothinae. Our phylogenetic reconstructions using both molecular and combined morphological and molecular data support the taxonomic splitting of Nembrothinae into several taxa. Excluding one species (Tambja tentaculata), the monophyly of Roboastra was supported by all the phylogenetic analyses of the combined molecular data. Nembrotha was monophyletic both in the morphological and molecular analyses, always with high support. However, Tambja was recovered as para- or polyphyletic, depending on the analysis performed. Our study also rejects the monophyly of "phanerobranch" dorids based on molecular data.  相似文献   

6.
Fragments of 12S and 16S mitochondrial DNA genes were sequenced for 14 acanthuroid taxa (representing all six families) and seven outgroup taxa. The combined data set contained 1399 bp after removal of all ambiguously aligned positions. Examination of site saturation indicated that loop regions of both genes are saturated for transitions, which led to a weighted parsimony analysis of the data set. The resulting tree topology generally agreed with previous morphological hypotheses, most notably placing the Luvaridae within the Acanthuroidei, but it also differed in several areas. The putative sister group of Acanthuroidei, Drepane, was recovered within the suborder, and the sister group of the family Acanthuridae, Zanclus, was likewise recovered within the family. Morphological characters were included to produce a combined data set of 1585 characters for 14 acanthuroid taxa and a single outgroup taxon. An analysis of the same 15 taxa was performed with only the DNA data for comparison. The total-evidence analysis supports the monophyly of the Acanthuridae. A parametric bootstrap suggests the possibility that the paraphyly of Acanthuridae indicated by the molecular analyses is the result of long-branch attraction. The disagreement between molecular and morphological data on the relationships of the basal acanthuroids and its putative sister taxon is unresolved.  相似文献   

7.
Major aspects of lorisid phylogeny and systematics remain unresolved, despite several studies (involving morphology, histology, karyology, immunology, and DNA sequencing) aimed at elucidating them. Our study is the first to investigate the evolution of this enigmatic group using molecular and morphological data for all four well-established genera: Arctocebus, Loris, Nycticebus, and Perodicticus. Data sets consisting of 386 bp of 12S rRNA, 535 bp of 16S rRNA, and 36 craniodental characters were analyzed separately and in combination, using maximum parsimony and maximum likelihood. Outgroups, consisting of two galagid taxa (Otolemur and Galagoides) and a lemuroid (Microcebus), were also varied. The morphological data set yielded a paraphyletic lorisid clade with the robust Nycticebus and Perodicticus grouped as sister taxa, and the galagids allied with Arctocebus. All molecular analyses maximum parsimony (MP) or maximum likelihood (ML) which included Microcebus as an outgroup rendered a paraphyletic lorisid clade, with one exception: the 12S + 16S data set analyzed with ML. The position of the galagids in these paraphyletic topologies was inconsistent, however, and bootstrap values were low. Exclusion of Microcebus generated a monophyletic Lorisidae with Asian and African subclades; bootstrap values for all three clades in the total evidence tree were over 90%. We estimated mean genetic distances for lemuroids vs. lorisoids, lorisids vs. galagids, and Asian vs. African lorisids as a guide to relative divergence times. We present information regarding a temporary land bridge that linked the two now widely separated regions inhabited by lorisids that may explain their distribution. Finally, we make taxonomic recommendations based on our results.  相似文献   

8.
Hypoptopomatinae and Neoplecostominae include about 250 valid species, a substantial portion of loricariid catfishes. Although the relationships among the members of these subfamilies have been inferred by many authors, the most recent hypotheses based on morphological and molecular data differ widely. Herein, we provide new data on the morphology of the central nervous system, and evaluate the usefulness of these characters in phylogenetic inference. To accomplish this, we characterized the gross brain morphology of those catfishes, and analyzed 54 neuroanatomical characters in a total of 40 terminal taxa representing Hypoptopomatinae and Neoplecostominae, and also members of Delturinae and Hypostominae as outgroups. Hypoptopomatinae and Neoplecostominae are recovered as separate subfamilies, and most of our results are compatible with morphology‐based analyses. We conclude that neuroanatomy provides an informative source of new characters with strong phylogenetic signal at all recovered taxonomic levels.  相似文献   

9.
The largest Recent family of Bivalvia, the marine Veneridae with approximately 800 species, comprises one of the least understood and most poorly defined molluscan taxa, despite including some of the most economically important and abundant bivalves, for example quahog, Pismo clams, and Manila clams. A review of previous phylogenetic analyses including the superfamily Veneroidea (Veneridae, Petricolidae, Glauconomidae, Turtoniidae, Neoleptonidae) and within the Veneridae shows minimal taxon sampling leading to weak conclusions and few supported synapomorphies. New phylogenetic analyses on 114 taxa tested the monophyly of Veneroidea, Veneridae, and 17 nominal venerid subfamilies, using morphological (conchological, anatomical) data and molecular sequences from mitochondrial (16S, cytochrome oxidase I) and nuclear (28S, histone 3) genes. Morphological analyses using 45 exemplar taxa and 23 traditional characters were highly homoplastic and failed to reconstruct traditional veneroid classification. Full morphological analyses (31 characters) supported the monophyly of Veneroidea and Veneridae but only when certain taxa were excluded, revealing analytical difficulties caused by a suite of characters associated with neotenous or miniaturized morphology. Molecular analyses resulted in substantially higher clade consistency. The combined molecular data set resulted in significant support for a particular topology. The monophyly of Veneridae was supported only when Petricolidae and Turtoniidae were subsumed, and recognized as members with derived or neotenous morphologies, respectively. Morphological character mapping on molecular trees retained a high level of homoplasy, but revealed synapomorphies for major branch points and supported six subfamily groups (Dosiniinae, Gemminae, Samarangiinae, Sunettinae, Tapetinae, combined Chioninae + Venerinae). Glauconomidae and Neoleptonidae are provisionally maintained in Veneroidea pending further study; Petricolinae and Turtoniinae are placed in Veneridae. © 2006 The Linnean Society of London, Zoological Journal of the Linnean Society, 2006, 148 , 439–521.  相似文献   

10.
Polyclad flatworms have a troubled classification history, with two contradicting systems in use. They both rely on a ventral adhesive structure to define the suborders Acotylea and Cotylea, but superfamilies were defined according to eyespot arrangement (Prudhoe’s system) or prostatic vesicle characters (Faubel’s system). Molecular data available cover a very limited part of the known polyclad family diversity and have not allowed testing morphology-based classification systems on Polycladida yet. We thus sampled a suitable marker, partial 28S ribosomal DNA (rDNA), from Polycladida (19 families and 32 genera), generating 136 new sequences and the first comprehensive genetic dataset on polyclads. Our maximum likelihood (ML) analyses recovered Polycladida, but the traditional suborders were not monophyletic, as the supposedly acotyleans Cestoplana and Theama were nested within Cotylea; we suggest that these genera should be included in Cotylea. The partial 28S rDNA trees were generally well supported and robust but in conflict with both Faubel’s and Prudhoe’s superfamilies. Therefore, we compiled morphological and anatomical characters for all taxa used and examined their distribution on our molecular tree. Combining morphological and molecular evidence, we redefined polyclad superfamilies. Acotylea contain tentaculated and atentaculated groups and is now divided in three superfamilies. The suborder Cotylea can be divided in five superfamilies. In general, there is a trait of anteriorization of sensory structures, from the plesiomorphic acotylean body plan to the cotylean gross morphology. Traditionally used characters, such as prostatic vesicle, eyespot distribution, and type of pharynx, are all homoplastic and likely have misled polyclad systematics so far.  相似文献   

11.
We developed a combined molecular and morphological approach to unravel complex variation at low taxonomic levels, exemplified by some arctic members of Potentilla. Twenty-one populations from Svalbard were analyzed for random amplified polymorphic DNAs (RAPDs) and 64 morphological characters to test the hypotheses that (1) the P. nivea complex (section Niveae) consists of three taxa (P. chamissonis, P. insularis, and P. nivea), (2) three "eco-morphotypes" in P. pulchella (section Multifidae) should be considered different taxa, and (3) P. insularis originated as an intersectional hybrid (Niveae × Multifidae). Twenty-two RAPD multilocus phenotypes were observed in the 136 plants analyzed based on 35 markers. Three fairly distinct groups of RAPD phenotypes were identified in the P. nivea complex based on multivariate analyses and an analysis of molecular variance (AMOVA; 77.6% among-group variation). The variation within the P. nivea complex was more or less continuous in multivariate analyses of the morphological data. We identified, however, several individual morphological characters that separated unambiguously among the three groups of RAPD phenotypes, revealing that these groups correspond to the previously hypothesized taxa. Many identical RAPD multilocus phenotypes were observed in the "eco-morphotypes" of P. pulchella, suggesting that its conspicuous morphological variation is caused by plasticity or by genetic variation at a small number of loci. The hypothesis of the hybrid origin of P. insularis was not supported by the RAPD data. Overall, very little RAPD variation was observed within populations of the four taxa (2.1-16.7% in AMOVA analyses; average genotypic diversity, D, was 0.10-0.30). We conclude that detailed, concerted analysis of molecules and morphology is a powerful tool in low-level taxonomy.  相似文献   

12.
Nematodes of the suborder Cephalobina include an ecologically and morphologically diverse array of species that range from soil-dwelling microbivores to parasites of vertebrates and invertebrates. Despite a long history of study, certain of these microbivores (Cephaloboidea) present some of the most intractable problems in nematode systematics; the lack of an evolutionary framework for these taxa has prevented the identification of natural groups and inhibited understanding of soil biodiversity and nematode ecology. Phylogenetic analyses of ribosomal (LSU) sequence data from 53 taxa revealed strong support for monophyly of taxa representing the Cephaloboidea, but do not support the monophyly of most genera within this superfamily. Historically these genera have primarily been recognized based on variation in labial morphology, but molecular phylogenies show the same general labial (probolae) morphotype often results from recurrent similarity, a result consistent with the phenotypic plasticity of probolae previously observed for some species in ecological time. Phylogenetic analyses of LSU rDNA also recovered strong support for some other groups of cephalobs, including taxa representing most (but not all) Panagrolaimoidea. In addition to revealing homoplasy of probolae, molecular trees also imply other unexpected patterns of character evolution or polarity, including recurrent similarity of offset spermatheca presence, and representation of complex probolae as the ancestral condition within Cephaloboidea. For Cephalobidae, molecular trees do not support traditional genera as natural groups, but it remains untested if deconstructing probolae morphotypes or other structural features into finer component characters may reveal homologies that help delimit evolutionary lineages.  相似文献   

13.
Proseriate flatworms are common members of the interstitial benthic fauna worldwide, predominantly occupying marine environments. As minute animals, having relatively few characters useful for cladistic analysis, they have been difficult to present in a phylogenetic framework using morphology alone. Here we present a new morphological matrix consisting of 16 putatively homologous characters and two molecular data sets to investigate further this major group of free-living members of the Platyhelminthes. Complete 18S rDNA (representing 277 parsimony-informative characters) from 17 ingroup taxa and partial 28S rDNA spanning variable expansion regions D1 to D3 and D1 to D6 (representing 219 and 361 parsimony-informative characters, respectively) from 27 and 14 ingroup taxa, respectively, were determined and aligned as complementary data sets. Morphological and molecular data sets were analyzed separately and together to determine underlying phylogenetic patterns and to resolve conflict between published scenarios based on morphology alone. The monophyly of the Proseriata cannot be confirmed categorically with any of these data sets. However, the constituent taxa are confirmed as basal members of the Neoophora, and a sister group relationship with Tricladida is rejected. Similarly, the monophyly of one of the two subtaxa of the Proseriata, the Lithophora, could not be confirmed with molecules. Concerning intragroup relationships, we could reject one of the two phylogenetic trees formerly proposed, as well as the clade Otoplanidae + Coelogynoporidae. However, a clade Otoplanidae + Archimonocelididae + Monocelididae (to which the Monotoplanidae belong) was supported, and the position of the genus Calviria shifted from the Archimonocelididae to the Coelogynoporidae.  相似文献   

14.
Hylid frog phylogeny and sampling strategies for speciose clades   总被引:3,自引:0,他引:3  
How should characters and taxa be sampled to resolve efficiently the phylogeny of ancient and highly speciose groups? We addressed this question empirically in the treefrog family Hylidae, which contains > 800 species and may be nonmonophyletic with respect to other anuran families. We sampled 81 species (54 hylids and 27 outgroups) for two mitochondrial genes (12S, ND1), two nuclear genes (POMC, c-myc), and morphology (144 characters) in an attempt to resolve higher-level relationships. We then added 117 taxa to the combined data set, many of which were sampled for only one gene (12S). Despite the relative incompleteness of the majority of taxa, the resulting trees placed all taxa in the expected higher-level clades with strong support, despite some taxa being > 90% incomplete. Furthermore, we found no relationship between the completeness of a taxon and the support (parsimony bootstrap or Bayesian posterior probabilities) for its localized placement on the tree. Separate analysis of the data set with the most taxa (12S) gives a somewhat problematic estimate of higher-level relationships, suggesting that data sets scored only for some taxa (ND1, nuclear genes, morphology) are important in determining the outcome of the combined analysis. The results show that hemiphractine hylids are not closely related to other hylids and should be recognized as a distinct family. They also show that the speciose genus Hyla is polyphyletic, but that its species can be arranged into three monophyletic genera. A new classification of hylid frogs is proposed. Several potentially misleading signals in the morphological data are discussed.  相似文献   

15.
Caecilian morphology is strongly modified in association with their fossorial mode of life. Currently phylogenetic analyses of characters drawn from the morphology of caecilians lack resolution, as well as complementarity, with results of phylogenetic analyses that employ molecular data. Stemming from the hypothesis derived from the mammal literature that the braincase has the greatest potential (in comparison to other cranial units) to yield phylogenetic information, the braincase and intimately associated stapes of 27 species (23 genera) of extant caecilians were examined using images assembled via microcomputed tomography. Thirty‐four new morphological characters pertaining to the braincase and stapes were identified and tested for congruence with previously recognized morphological characters. The results reveal that when added to previous character matrices, characters of the braincase and stapes resolve generic‐level relationships in a way that is largely congruent with the results of molecular analyses. Analysis of a combined data set of molecular and morphological data provides a framework for conducting ancestral character state reconstructions, which resulted in the identification of 95 new synapomorphies for various clades and taxa, 27 of which appear to be unique for the taxa that possess them. Together these data demonstrate the utility of the application of characters of the braincase and stapes for resolving phylogenetic relationships for a group whose morphology is largely confounded by functional modifications. In addition this study provides evidence of the utility of the braincase in resolving problematic morphology‐based phylogeny outside of Amniota, in an amphibian group. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 160–201.  相似文献   

16.
The Cerithioidea is an ecologically important superfamily of basal Caenogastropoda with speciose marine, brackish water, and freshwater lineages primarily in tropical, subtropical, and warm temperate regions of the world. They often represent significant components of the communities where they occur and have given rise to several spectacular endemic radiations in rivers and ancient lakes. Earlier attempts to resolve the phylogenetic history of the group have been based on smaller taxon and character subsets with incongruent results. Here the monophyly and phylogeny of the group is evaluated with expanded morphological and molecular (16S, 28S rRNA) data sets. For morphological analyses, 151 characters (shell, operculum, radula, alimentary tract, kidney, nervous system, reproductive anatomy, and sperm ultrastructure) were scored for 47 cerithioideans (representing 17 families) and nine outgroup taxa. To test monophyly of the Cerithioidea, extended molecular data sets of 16S and 28S sequences for 57 and 44 taxa, respectively, were compiled using new and previously published sources. For combined analyses, a pruned molecular data set was combined with the morphological partition. The morphological data were analysed alone using only parsimony; molecular and simultaneous analyses were performed using both parsimony and Bayesian inference. The effect of excluding unconserved regions of the alignments was also explored. All analyses, with the exception of the individual 16S and 28S data sets, support monophyly of the Cerithioidea as currently formulated. Of the 12 families represented by more than one terminal, only two (Planaxidae, Potamididae) are always supported as monophyletic; Batillariidae, Cerithiidae, Pachychilidae, Pleuroceridae, Semisulcospiridae, Thiaridae, and Turritellidae are monophyletic in most but not all topologies. The combination of diverse data sources (morphology, 16S and 28S sequences) and inclusion of unconserved regions of the alignments improved the recovery of monophyletic families. At deeper levels, a consensus is beginning to emerge in the recognition of three main assemblages, but whether these represent clades or grades is still unclear; the resolution of these assemblages and the branching order within them are sensitive to exclusion of unconserved regions and choice of optimality criterion. No clear conclusion is reached with respect to the number of freshwater invasions, with two invasions supported on some topologies and three supported on others. Progress toward a robust and stable resolution of cerithioidean relationships will require (1) strategically coordinated sampling for additional morphological and molecular data; (2) comprehensive anatomical treatments for several poorly documented limnic lineages (e.g. Melanopsidae, Thiaridae) and comparative data for poorly understood organ systems (e.g. renal system); (3) the addition of poorly known, minute, and/or rare marine taxa, to provide novel character combinations, insight into putative homologies, and to help anchor basal nodes and break up long branches. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 162 , 43–89.  相似文献   

17.
The first comprehensive phylogenetic analyses of the most diverse subfamily of plant bugs, Mirinae, is presented in this study, for 110 representative taxa based on total evidence analysis. A total of 85 morphological characters and 3898 bp of mitochondrial (16S, COI) and nuclear (18S, 28S) sequences were analysed for each partitioned and combined dataset based on parsimony, maximum likelihood and Bayesian inference. Major results obtained in this study include monophyly of the tribe Mecistoscelini. The largest tribe, Mirini, was recovered as polyphyletic, and Stenodemini was recovered as paraphyletic. The clade of Stenodemini + Mecistoscelini is the sister group of the remaining Mirinae. The monophyly of two complexes composed of superficially similar genera were tested; the Lygus complex was recovered as nonmonophyletic, and the Adelphocoris–Creontiades–Megacoelum complex was confirmed to be monophyletic. The generic relationships of the main clades within each tribe based on the phylogeny, as well as their supported morphological characters, are discussed.  相似文献   

18.
An hypothesis of phylogenetic relationships of Asilidae and its constituent taxa is presented, combining morphological and DNA sequence data in a total evidence framework. It is based on 77 robber fly species, 11 Asiloidea outgroup species, 211 morphological characters of the adult fly, and approximately 7300 bp of nuclear DNA from five genes (18S and 28S rDNA, AATS, CAD, and EF-1α protein-encoding DNA). The equally weighted, simultaneous parsimony analysis under dynamic homology in POY resulted in a single most parsimonious cladogram with a cost of 27,582 (iterative pass optimization; 27,703 under regular direct optimization). Six of the 12 included subfamily taxa are recovered as monophyletic. Trigonomiminae, previously always considered as monophyletic based on morphology, is shown to be non-monophyletic. Two of the three Trigonomiminae genera, Holcocephala Jaennicke, 1867 and Rhipidocephala Hermann, 1926, group unexpectedly as the sister taxon to all other Asilidae. Laphriinae, previously seen in the latter position, is the sister group of the remaining Asilidae. Five other subfamily taxa, i.e. Brachyrhopalinae, Dasypogoninae, Stenopogoninae, Tillobromatinae, and Willistonininae, are also shown to be non-monophyletic. The phylogenetic relationships among the higher-level taxa are partly at odds with findings of a recently published morphological study based on more extensive taxon sampling. The total evidence hypothesis is considered as the most informative one, but the respective topologies from the total-evidence, morphology-only, and molecular-only analyses are compared and contrasted in order to discuss the signals from morphological versus molecular data, and to analyze whether the molecular data outcompete the fewer morphological characters. A clade Apioceridae+Mydidae is corroborated as the sister taxon to Asilidae.  相似文献   

19.
Allium paniculatum L. is commonly recorded from the Euro-Mediterranean and Irano-Turanian regions. Evidence from literature and herbarium collections revealed that many different taxa of A. sect. Codonoprasum Rchb., all characterized by big size, diffuse and densely flowered umbrella, very long spathe valves, long pedicels, and cylindrical-campanulate perigon, have been wrongly attributed to this species thus affecting records on its geographic distribution and morphological characterization. In order to define the true identity of A. paniculatum, we analyzed specimens coming from the type locality (Don River), and provided details on morphology, ecology, karyology, leaf anatomy, seed morphology and seed coat micro-sculpturing. Taxonomic and phylogenetic relationships with related species of sect. Codonoprasum and with other taxa of different sections were investigated by means of morphological characters and molecular data from the internal transcribed spacers (ITS) nrDNA and the trnH-psbA cpDNA region. Maximum parsimony and Bayesian inference analyses of molecular data recovered two main clades in A. sect. Codonoprasum and clearly separated A. paniculatum from related taxa. The taxonomic implications of these patterns of relationships are discussed. To our knowledge, this is the first study documenting in-depth phylogenetic relationships within A. sect. Codonoprasum.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号