首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The eco‐friendly and low‐cost Co‐free Li1.2Mn0.585Ni0.185Fe0.03O2 is investigated as a positive material for Li‐ion batteries. The electrochemical performance of the 3 at% Fe‐doped material exhibits an optimal performance with a capacity and voltage retention of 70 and 95%, respectively, after 200 cycles at 1C. The effect of iron doping on the electrochemical properties of lithium‐rich layered materials is investigated by means of in situ X‐ray diffraction spectroscopy and galvanostatic intermittent titration technique during the first charge–discharge cycle while high‐resolution transmission electron microscopy is used to follow the structural and chemical change of the electrode material upon long‐term cycling. By means of these characterizations it is concluded that iron doping is a suitable approach for replacing cobalt while mitigating the voltage and capacity degradation of lithium‐rich layered materials. Finally, complete lithium‐ion cells employing Li1.2Mn0.585Ni0.185Fe0.03O2 and graphite show a specific energy of 361 Wh kg?1 at 0.1C rate and very stable performance upon cycling, retaining more than 80% of their initial capacity after 200 cycles at 1C rate. These results highlight the bright prospects of this material to meet the high energy density requirements for electric vehicles.  相似文献   

2.
Molybdenum disulfide (MoS2), which possesses a layered structure and exhibits a high theoretical capacity, is currently under intensive research as an anode candidate for next generation of Li‐ion batteries. However, unmodified MoS2 suffers from a poor cycling stability and an inferior rate capability upon charge/discharge processes. Herein, a unique nanocomposite comprising MoS2 nanothorns epitaxially grown on the backbone of carbon nanotubes (CNTs) and coated by a layer of amorphous carbon is synthesized via a simple method. The epitaxial growth of MoS2 on CNTs results in a strong chemical coupling between active nanothorns and carbon substrate via C? S bond, providing a high stability as well as a high‐efficiency electron‐conduction/ion‐transportation system on cycling. The outer carbon layer can well‐accommodate the structural strain in the electrode upon lithium‐ion insertion/extraction. When employed as an anode for lithium storage, the prepared material exhibits remarkable electrochemical properties with a high specific capacity of 982 mA h g?1 at 0.1 A g?1, as well as excellent long‐cycling stability (905 mA h g?1 at 1 A g?1 after 500 cycles) and superior rate capability, confirming its potential application in high‐performance Li‐ion batteries.  相似文献   

3.
Antimony (Sb) is a promising anode material for sodium‐ion batteries owing to its large capacity of 660 mAh g?1. However, its practical application is restricted by the rapid capacity decay resulted from a large volume expansion up to 390% upon Na alloying. Herein, construction of a self‐supported Sb array that has enough space allowing for effective accommodation of the volume change is reported. The array of Sb prisms is directly grown on a Cu substrate via a template‐free electrodeposition, followed by mild heating to consolidate the structural integrity between Sb and Cu. The resulting 3D architecture endows the Sb array with excellent sodium storage performance, exhibiting a reversible capacity of 578 mAh g?1 and retaining 531 mAh g?1 over 100 cycles at 0.5 C. The potential of Sb array in sodium‐ion full cells by pairing it with a Na0.67(Ni0.23Mg0.1Mn0.67)O2 cathode is further demonstrated. This full cell affords a specific energy of 197 Wh kg?1 at 0.2 C and a specific power of 1280 W kg?1 at 5 C. Considering its low cost and scale‐up capability, the template‐free route may find extensive applications in designing electrode architectures.  相似文献   

4.
The ion insertion properties of MoS2 continue to be of widespread interest for energy storage. While much of the current work on MoS2 has been focused on the high capacity four‐electron reduction reaction, this process is prone to poor reversibility. Traditional ion intercalation reactions are highlighted and it is demonstrated that ordered mesoporous thin films of MoS2 can be utilized as a pseudocapacitive energy storage material with a specific capacity of 173 mAh g?1 for Li‐ions and 118 mAh g?1 for Na‐ions at 1 mV s?1. Utilizing synchrotron grazing incidence X‐ray diffraction techniques, fast electrochemical kinetics are correlated with the ordered porous structure and with an iso‐oriented crystal structure. When Li‐ions are utilized, the material can be charged and discharged in 20 seconds while still achieving a specific capacity of 140 mAh g?1. Moreover, the nanoscale architecture of mesoporous MoS2 retains this level of lithium capacity for 10 000 cycles. A detailed electrochemical kinetic analysis indicates that energy storage for both ions in MoS2 is due to a pseudocapacitive mechanism.  相似文献   

5.
Developing multielectron reaction electrode materials is essential for achieving high specific capacity and high energy density in secondary batteries; however, it remains a great challenge. Herein, Na3MnTi(PO4)3/C hollow microspheres with an open and stable NASICON framework are synthesized by a spray‐drying‐assisted process. When applied as a cathode material for sodium‐ion batteries, the resultant Na3MnTi(PO4)3/C microspheres demonstrate fully reversible three‐electron redox reactions, corresponding to the Ti3+/4+ (≈2.1 V), Mn2+/3+ (≈3.5 V), and Mn3+/4+ (≈4.0 V vs Na+/Na) redox couples. In situ X‐ray diffraction results reveals that both solid‐solution and two‐phase electrochemical reactions are involved in the sodiation/desodiation processes. The high specific capacity (160 mAh g?1 at 0.2 C), outstanding cyclability (≈92% capacity retention after 500 cycles at 2 C), and the facile synthesis make the Na3MnTi(PO4)3/C a prospective cathode material for sodium‐ion batteries.  相似文献   

6.
Silicon is promising as a high energy anode for next‐generation lithium‐ion batteries. However, severe capacity fading upon cycling associated with huge volume change is still an obstacle for silicon toward practical applications. Herein, the authors report that Si‐substituted Zn2(GeO4)0.8(SiO4)0.2 nanowires can effectively suppress volume expansion effect, exhibiting high specific capacity (1274 mA h g?1 at 0.2 A g?1 after 700 cycles) and ultralong cycling stability (2000 cycles at 5 A g?1 with a capacity decay rate of 0.008% per cycle), which represents outstanding comprehensive performance. The superior performance is ascribed to the substitution of Si atom that imparts to the nanowires not only high reactivity and reversibility, but also the unique stress‐relieved property upon lithiation which is further confirmed by detailed density‐functional theory computation. This work provides a new guideline for designing high‐performance Si‐based materials toward practical energy storage applications.  相似文献   

7.
Sodium ion batteries (SIBs) have drawn significant attention owing to their low cost and inherent safety. However, the absence of suitable anode materials with high rate capability and long cycling stability is the major challenge for the practical application of SIBs. Herein, an efficient anode material consisting of uniform hollow iron sulfide polyhedrons with cobalt doping and graphene wrapping (named as CoFeS@rGO) is developed for high‐rate and long‐life SIBs. The graphene‐encapsulated hollow composite assures fast and continuous electron transportation, high Na+ ion accessibility, and strong structural integrity, showing an extremely small volume expansion of only 14.9% upon sodiation and negligible volume contraction during the desodiation. The CoFeS@rGO electrode exhibits high specific capacity (661.9 mAh g?1 at 100 mA g?1), excellent rate capability (449.4 mAh g?1 at 5000 mA g?1), and long cycle life (84.8% capacity retention after 1500 cycles at 1000 mA g?1). In situ X‐ray diffraction and selected‐area electron diffraction patterns show that this novel CoFeS@rGO electrode is based on a reversible conversion reaction. More importantly, when coupled with a Na3V2(PO4)3/C cathode, the sodium ion full battery delivers a superexcellent rate capability (496.8 mAh g?1 at 2000 mA g?1) and ≈96.5% capacity retention over 200 cycles at 500 mA g?1 in the 1.0–3.5 V window. This work indicates that the rationally designed anode material is highly applicable for the next generation SIBs with high‐rate capability and long‐term cyclability.  相似文献   

8.
Sodium (Na) super ion conductor structured Na3V2(PO4)3 (NVP) is extensively explored as cathode material for sodium‐ion batteries (SIBs) due to its large interstitial channels for Na+ migration. The synthesis of 3D graphene‐like structure coated on NVP nanoflakes arrays via a one‐pot, solid‐state reaction in molten hydrocarbon is reported. The NVP nanoflakes are uniformly coated by the in situ generated 3D graphene‐like layers with the thickness of 3 nm. As a cathode material, graphene covered NVP nanoflakes exhibit excellent electrochemical performances, including close to theoretical reversible capacity (115.2 mA h g?1 at 1 C), superior rate capability (75.9 mA h g?1 at 200 C), and excellent cyclic stability (62.5% of capacity retention over 30000 cycles at 50 C). Furthermore, the 3D graphene‐like cages after removing NVP also serve as a good anode material and deliver a specific capacity of 242.5 mA h g?1 at 0.1 A g?1. The full SIB using these two cathode and anode materials delivers a high specific capacity (109.2 mA h g?1 at 0.1 A g?1) and good cycling stability (77.1% capacity retention over 200 cycles at 0.1 A g?1).  相似文献   

9.
K‐ion batteries (KIBs) are promising for large‐scale energy storage owing to various advantages like the high abundance of potassium resources in the Earth's crust, high operational potentials, and high power due to fast diffusion of K+ ions. However, to realize the practical application of KIBs, electrode materials are needed with high operational voltage, good capacity, long cycle life, and low‐cost. This work reports a layered open framework material, K2[(VOHPO4)2(C2O4)], composited with reduced graphene oxide (rGO) as a 4 V positive electrode material for KIBs. The material is prepared by a simple precipitation reaction at room temperature. The material demonstrates reversible K‐extraction/insertion with conventional carbonate ester KPF6 solutions; however, with low specific capacity and low Coulombic efficiency. A high discharge capacity of >100 mAh g?1 with good cycling stability and higher Coulombic efficiency is achieved in a highly concentrated electrolyte, 7 mol kg?1 of potassium bis(fluorosulfonyl)amide (KFSA) in dimethoxyethane (DME) at 0.1 C rate. Due to the facile migration of K+ ions in the framework, the material exhibits excellent rate capability with a discharge capacity of 80 mAh g?1 at 10 C rate, and a good capacity retention of 67% after 500 cycles at 2 C rate.  相似文献   

10.
The exploration of high‐energy‐density cathode materials is vital to the practical use of K‐ion batteries. Layered K‐metal oxides have too high a voltage slope due to their large K+–K+ interaction, resulting in low specific capacity and average voltage. In contrast, the 3D arrangement of K+, with polyanions separating them, reduces the strength of the effective K+‐K+ repulsion, which in turn increases specific capacity and voltage. Here, stoichiometric KVPO4F for use as a high‐energy‐density K‐ion cathode is developed. The KVPO4F cathode delivers a reversible capacity of ≈105 mAh g?1 with an average voltage of ≈4.3 V (vs K/K+), resulting in a gravimetric energy density of ≈450 Wh kg?1. During electrochemical cycling, the KxVPO4F cathode goes through various intermediate phases at x = 0.75, 0.625, and 0.5 upon K extraction and reinsertion, as determined by ex situ X‐ray diffraction characterization and ab initio calculations. This work further explains the role of oxygen substitution in KVPO4+xF1?x: the oxygenation of KVPO4F leads to an anion‐disordered structure which prevents the formation of K+/vacancy orderings without electrochemical plateaus and hence to a smoother voltage profile.  相似文献   

11.
Yolk‐like TiO2 are prepared through an asymmetric Ostwald ripening, which is simultaneously doped by nitrogen and wrapped by carbon from core to shell. It presents a high specific surface area (144.9 m2 g?1), well‐defined yolk‐like structure (600–700 nm), covered with interweaved nanosheets (3–5 nm) and tailored porosity (5–10 nm) configuration. When first utilized as anode material for sodium‐ion batteries (SIBs), it delivers a high reversible specific capacity of 242.7 mA h g?1 at 0.5 C and maintains a considerable capacity of 115.9 mA h g?1 especially at rate 20 C. Moreover, the reversible capacity can still reach 200.7 mA h g?1 after 550 cycles with full capacity retention at 1 C. Even cycled at extremely high rate 25 C, the capacity retention of 95.5% after 3000 cycles is acquired. Notably, an ultrahigh initial coulombic efficiency of 59.1% is achieved. The incorporation of nitrogen with narrowing the band gap accompanied with carbon uniformly coating from core to shell make the NC TiO2‐Y favor a bulk type conductor, resulting in fast electron transfer, which is beneficial to long‐term cycling stability and remarkable rate capability. It is of great significance to improve the energy‐storage properties through development of the bulk type conductor as anode materials in SIBs.  相似文献   

12.
Hard carbon (HC) is the state‐of‐the‐art anode material for sodium‐ion batteries (SIBs). However, its performance has been plagued by the limited initial Coulombic efficiency (ICE) and mediocre rate performance. Here, experimental and theoretical studies are combined to demonstrate the application of lithium‐pretreated HC (LPHC) as high‐performance anode materials for SIBs by manipulating the solid electrolyte interphase in tetraglyme (TEGDME)‐based electrolyte. The LPHC in TEGDME can 1) deliver > 92% ICE and ≈220 mAh g?1 specific capacity, twice of the capacity (≈100 mAh g?1) in carbonate electrolyte; 2) achieve > 85% capacity retention over 1000 cycles at 1000 mA g?1 current density (4 C rate, 1 C = 250 mA g?1) with a specific capacity of ≈150 mAh g?1, ≈15 times of the capacity (10 mAh g?1) in carbonate. The full cell of Na3V2(PO4)3‐LPHC in TEGDME demonstrated close to theoretical specific capacity of ≈98 mAh g?1 based on Na3V2(PO4)3 cathode, ≈2.5 times of the value (≈40 mAh g?1) with nontreated HC. This work provides new perception on the anode development for SIBs.  相似文献   

13.
The polyanion Li7V15O36(CO3) is a nanosized molecular cluster (≈1 nm in size), that has the potential to form an open host framework with a higher surface‐to‐bulk ratio than conventional transition metal oxide electrode materials. Herein, practical rechargeable Na‐ion batteries and symmetric Li‐ion batteries are demonstrated based on the polyoxovanadate Li7V15O36(CO3). The vanadium centers in {V15O36(CO3)} do not all have the same VIV/V redox potentials, which permits symmetric devices to be created from this material that exhibit battery‐like energy density and supercapacitor‐like power density. An ultrahigh specific power of 51.5 kW kg?1 at 100 A g?1 and a specific energy of 125 W h kg?1 can be achieved, along with a long cycling life (>500 cycles). Moreover, electrochemical and theoretical studies reveal that {V15O36(CO3)} also allows the transport of large cations, like Na+, and that it can serve as the cathode material for rechargeable Na‐ion batteries with a high specific capacity of 240 mA h g?1 and a specific energy of 390 W h kg?1 for the full Na‐ion battery. Finally, the polyoxometalate material from these electrochemical energy storage devices can be easily extracted from spent electrodes by simple treatment with water, providing a potential route to recycling of the redox active material.  相似文献   

14.
A series of F‐substituted Na2/3Ni1/3Mn2/3O2?xFx (x = 0, 0.03, 0.05, 0.07) cathode materials have been synthesized and characterized by solid‐state 19F and 23Na NMR, X‐ray photoelectron spectroscopy, and neutron diffraction. The underlying charge compensation mechanism is systematically unraveled by X‐ray absorption spectroscopy and electron energy loss spectroscopy (EELS) techniques, revealing partial reduction from Mn4+ to Mn3+ upon F‐substitution. It is revealed that not only Ni but also Mn participates in the redox reaction process, which is confirmed for the first time by EELS techniques, contributing to an increase in discharge specific capacity. The detailed structural transformations are also revealed by operando X‐ray diffraction experiments during the intercalation and deintercalation process of Na+, demonstrating that the biphasic reaction is obviously suppressed in the low voltage region via F‐substitution. Hence, the optimized sample with 0.05 mol f.u.?1 fluorine substitution delivers an ultrahigh specific capacity of 61 mAh g?1 at 10 C after 2000 cycles at 30 °C, an extraordinary cycling stability with a capacity retention of 75.6% after 2000 cycles at 10 C and 55 °C, an outstanding full battery performance with 89.5% capacity retention after 300 cycles at 1 C. This research provides a crucial understanding of the influence of F‐substitution on the crystal structure of the P2‐type materials and opens a new avenue for sodium‐ion batteries.  相似文献   

15.
Cathode materials with high energy density, long cycle life, and low cost are of top priority for energy storage systems. The Li‐rich transition metal (TM) oxides achieve high specific capacities by redox reactions of both the TM and oxygen ions. However, the poor reversible redox reaction of the anions results in severe fading of the cycling performance. Herein, the vacancy‐containing Na4/7[Mn6/7(?Mn)1/7]O2 (?Mn for vacancies in the Mn? O slab) is presented as a novel cathode material for Na‐ion batteries. The presence of native vacancies endows this material with attractive properties including high structural flexibility and stability upon Na‐ion extraction and insertion and high reversibility of oxygen redox reaction. Synchrotron X‐ray absorption near edge structure and X‐ray photoelectron spectroscopy studies demonstrate that the charge compensation is dominated by the oxygen redox reaction and Mn3+/Mn4+ redox reaction separately. In situ synchrotron X‐ray diffraction exhibits its zero‐strain feature during the cycling. Density functional theory calculations further deepen the understanding of the charge compensation by oxygen and manganese redox reactions and the immobility of the Mn ions in the material. These findings provide new ideas on searching for and designing materials with high capacity and high structural stability for novel energy storage systems.  相似文献   

16.
The first entirely AM/3D‐printed sodium‐ion (full‐cell) battery is reported herein, presenting a paradigm shift in the design and prototyping of energy‐storage architectures. AM/3D‐printing compatible composite materials are developed for the first time, integrating the active materials NaMnO2 and TiO2 within a porous supporting material, before being AM/3D‐printed into a proof‐of‐concept model based upon the basic geometry of commercially existing AA battery designs. The freestanding and completely AM/3D‐fabricated device demonstrates a respectable performance of 84.3 mAh g?1 with a current density of 8.43 mA g?1; note that the structure is typically comprised of 80% thermoplastic, but yet, still works and functions as an energy‐storage platform. The AM/3D‐fabricated device is critically benchmarked against a battery developed using the same active materials, but fabricated via a traditional manufacturing method utilizing an ink‐based/doctor‐bladed methodology, which is found to exhibit a specific capacity of 98.9 mAh m?2 (116.35 mAh g?1). The fabrication of fully AM/3D‐printed energy‐storage architectures compares favorably with traditional approaches, with the former providing a new direction in battery manufacturing. This work represents a paradigm shift in the technological and design considerations in battery and energy‐storage architectures.  相似文献   

17.
While the practical application of electrode materials depends intensively on the Li+ ion storage mechanisms correlating ultimately with the coulombic efficiency, reversible capacity, and morphology variation of electrode material upon cycling, only intercalation‐type electrode materials have proven viable for commercialization up to now. This paper reviews the promising anode materials of metal vanadates (MxVyOz, M = Co, Cu, Mn, Fe, Zn, Ni, Li) that have high capacity, low cost, and abundant resource, and also discusses the related Li+ ion storage mechanism. It is concluded that most of these (MxVyOz, M = Co, Cu, Mn, Fe, Zn, Ni) exhibit irreversible redox reactions upon lithiation/delithiation accompanied by large volume expansion, which is not favorable for industrial applications. In particular, Li3VO4 with specific intercalation Li+ ion storage mechanism and compatible merits of safety and energy density exhibits great potential for practical application. This review systematically summarizes the latest progress in Li3VO4 research, including the representative fabrication approaches for advanced morphology and state‐of‐the‐art technologies to boost performance and the morphology variation associated with Li+ ion storage mechanisms. Furthermore, an outlook on where breakthroughs for Li3VO4 may be most likely achieved will be provided.  相似文献   

18.
A hybrid nanoarchitecture aerogel composed of WS2 nanosheets and carbon nanotube‐reduced graphene oxide (CNT‐rGO) with ordered microchannel three‐dimensional (3D) scaffold structure was synthesized by a simple solvothermal method followed by freeze‐drying and post annealing process. The 3D ordered microchannel structures not only provide good electronic transportation routes, but also provide excellent ionic conductive channels, leading to an enhanced electrochemical performance as anode materials both for lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs). Significantly, WS2/CNT‐rGO aerogel nanostructure can deliver a specific capacity of 749 mA h g?1 at 100 mA g?1 and a high first‐cycle coulombic efficiency of 53.4% as the anode material of LIBs. In addition, it also can deliver a capacity of 311.4 mA h g?1 at 100 mA g?1, and retain a capacity of 252.9 mA h g?1 at 200 mA g?1 after 100 cycles as the anode electrode of SIBs. The excellent electrochemical performance is attributed to the synergistic effect between the WS2 nanosheets and CNT‐rGO scaffold network and rational design of 3D ordered structure. These results demonstrate the potential applications of ordered CNT‐rGO aerogel platform to support transition‐metal‐dichalcogenides (i.e., WS2) for energy storage devices and open up a route for material design for future generation energy storage devices.  相似文献   

19.
Herein, P′2‐type Na0.67[Ni0.1Fe0.1Mn0.8]O2 is introduced as a promising new cathode material for sodium‐ion batteries (SIBs) that exhibits remarkable structural stability during repetitive Na+ de/intercalation. The O? Ni? O? Mn? O? Fe? O bond in the octahedra of transition‐metal layers is used to suppress the elongation of the Mn? O bond and to improve the electrochemical activity, leading to the highly reversible Na storage mechanism. A high discharge capacity of ≈220 mAh g?1 (≈605 Wh kg?1) is delivered at 0.05 C (13 mAg?1) with a high reversible capacity of ≈140 mAh g?1 at 3 C and excellent capacity retention of 80% over 200 cycles. This performance is associated with the reversible P′2–OP4 phase transition and small volume change upon charge and discharge (≈3%). The nature of the sodium storage mechanism in a full cell paired with a hard carbon anode reveals an unexpectedly high energy density of ≈542 Wh kg?1 at 0.2 C and good capacity retention of ≈81% for 500 cycles at 1 C (260 mAg?1).  相似文献   

20.
Aqueous batteries are facing big challenges in the context of low working voltages and energy density, which are dictated by the narrow electrochemical window of aqueous electrolytes and low specific capacities of traditional intercalation‐type electrodes, even though they usually represent high safety, low cost, and simple maintenance. For the first time, this work demonstrates a record high‐energy‐density (1503 Wh kg?1 calculated from the cathode active material) aqueous battery system that derives from a novel electrolyte design to expand the electrochemical window of electrolyte to 3 V and two high‐specific‐capacity electrode reactions. An acid‐alkaline dual electrolyte separated by an ion‐selective membrane enables two dissolution/deposition electrode redox reactions of MnO2/Mn2+ and Zn/Zn(OH)42? with theoretical specific capacities of 616 and 820 mAh g?1, respectively. The newly proposed Zn–Mn2+ aqueous battery shows a high Coulombic efficiency of 98.4% and cycling stability of 97.5% of discharge capacity retention for 1500 cycles. Furthermore, in the flow battery based on Zn–Mn2+ pairs, more excellent stability of 99.5% of discharge capacity retention for 6000 cycles is achieved due to greatly improved reversibility of the Zn anode. This work provides a new path for the development of novel aqueous batteries with high voltage and energy density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号