首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During entry, herpes simplex virus type 1 (HSV-1) releases its capsid and the tegument proteins into the cytosol of a host cell by fusing with the plasma membrane. The capsid is then transported to the nucleus, where it docks at the nuclear pore complexes (NPCs), and the viral genome is rapidly released into the nucleoplasm. In this study, capsid association with NPCs and uncoating of the viral DNA were reconstituted in vitro. Isolated capsids prepared from virus were incubated with cytosol and purified nuclei. They were found to bind to the nuclear pores. Binding could be inhibited by pretreating the nuclei with wheat germ agglutinin, anti-NPC antibodies, or antibodies against importin beta. Furthermore, in the absence of cytosol, purified importin beta was both sufficient and necessary to support efficient capsid binding to nuclei. Up to 60 to 70% of capsids interacting with rat liver nuclei in vitro released their DNA if cytosol and metabolic energy were supplied. Interaction of the capsid with the nuclear pore thus seemed to trigger the release of the viral genome, implying that components of the NPC play an active role in the nuclear events during HSV-1 entry into host cells.  相似文献   

2.
3.
4.
5.
Role of the UL25 protein in herpes simplex virus DNA encapsidation   总被引:1,自引:0,他引:1       下载免费PDF全文
The herpes simplex virus protein UL25 attaches to the external vertices of herpes simplex virus type 1 capsids and is required for the stable packaging of viral DNA. To define regions of the protein important for viral replication and capsid attachment, the 580-amino-acid UL25 open reading frame was disrupted by transposon mutagenesis. The UL25 mutants were assayed for complementation of a UL25 deletion virus, and in vitro-synthesized protein was tested for binding to UL25-deficient capsids. Of the 11 mutants analyzed, 4 did not complement growth of the UL25 deletion mutant, and analysis of these and additional mutants in the capsid-binding assay demonstrated that UL25 amino acids 1 to 50 were sufficient for capsid binding. Several UL25 mutations were transferred into recombinant viruses to analyze the effect of the mutations on UL25 capsid binding and on DNA cleavage and packaging. Studies of these mutants demonstrated that amino acids 1 to 50 of UL25 are essential for its stable interaction with capsids and that the C terminus is essential for DNA packaging and the production of infectious virus through its interactions with other viral packaging or tegument proteins. Analysis of viral DNA cleavage demonstrated that in the absence of a functional UL25 protein, aberrant cleavage takes place at the unique short end of the viral genome, resulting in truncated viral genomes that are not retained in capsids. Based on these observations, we propose a model where UL25 is required for the formation of DNA-containing capsids by acting to stabilize capsids that contain full-length viral genomes.  相似文献   

6.
Many viruses depend on host microtubule motors to reach their destined intracellular location. Viral particles of neurotropic alphaherpesviruses such as herpes simplex virus 1 (HSV1) show bidirectional transport towards the cell center as well as the periphery, indicating that they utilize microtubule motors of opposing directionality. To understand the mechanisms of specific motor recruitment, it is necessary to characterize the molecular composition of such motile viral structures. We have generated HSV1 capsids with different surface features without impairing their overall architecture, and show that in a mammalian cell-free system the microtubule motors dynein and kinesin-1 and the dynein cofactor dynactin could interact directly with capsids independent of other host factors. The capsid composition and surface was analyzed with respect to 23 structural proteins that are potentially exposed to the cytosol during virus assembly or cell entry. Many of these proteins belong to the tegument, the hallmark of all herpesviruses located between the capsid and the viral envelope. Using immunoblots, quantitative mass spectrometry and quantitative immunoelectron microscopy, we show that capsids exposing inner tegument proteins such as pUS3, pUL36, pUL37, ICP0, pUL14, pUL16, and pUL21 recruited dynein, dynactin, kinesin-1 and kinesin-2. In contrast, neither untegumented capsids exposing VP5, VP26, pUL17 and pUL25 nor capsids covered by outer tegument proteins such as vhs, pUL11, ICP4, ICP34.5, VP11/12, VP13/14, VP16, VP22 or pUS11 bound microtubule motors. Our data suggest that HSV1 uses different structural features of the inner tegument to recruit dynein or kinesin-1. Individual capsids simultaneously accommodated motors of opposing directionality as well as several copies of the same motor. Thus, these associated motors either engage in a tug-of-war or their activities are coordinately regulated to achieve net transport either to the nucleus during cell entry or to cytoplasmic membranes for envelopment during assembly.  相似文献   

7.
We investigate the interaction of hepatitis B virus capsids lacking a nuclear localization signal with nuclear pore complexes (NPCs) in permeabilized HeLa cells. Confocal and wide-field optical images of the nuclear envelope show well-spaced individual NPCs. Specific interactions of capsids with single NPCs are characterized by extended residence times of capsids in the focal volume which are characterized by fluorescence correlation spectroscopy. In addition, single-capsid-tracking experiments using fast wide-field fluorescence microscopy at 50 frames/s allow us to directly observe specific binding via a dual-color colocalization of capsids and NPCs. We find that binding occurs with high probability on the nuclear-pore ring moiety, at 44 ± 9 nm radial distance from the central axis.  相似文献   

8.
9.
Meckes DG  Wills JW 《Journal of virology》2008,82(21):10429-10435
We have made the surprising discovery that the interactions of herpes simplex virus with its initial cell attachment receptor induce a rapid and highly efficient structural change in the tegument, the region of the virion situated between the membrane and the capsid. It has been known for nearly a decade that viruses can trigger host signaling pathways when they bind to receptors on the cell surface; however, until now there has been no evidence that a signal can be sent in reverse--from the "outside in"--across a viral membrane. Evidence for this signaling event was found during studies of UL16, a tegument protein that is conserved among all the herpesviruses. Previous work has demonstrated that UL16 is bound to capsids isolated from the cytoplasm of infected cells, but this interaction is destabilized during subsequent egress steps, leading to release of the extracellular virion. Pretreatment with N-ethylmaleimide, a small, membrane-permeating compound that covalently modifies free cysteines, restabilizes the interaction, thereby permitting the capsid-UL16 complex to be isolated following disruption of virions with NP-40. In the experiments described here, we found that the natural signal for release of UL16 from capsids is sent when virions merely bind to cells at 4 degrees C. The internal change was also observed upon binding to immobilized heparin in a manner that requires viral glycoprotein C. This represents the first example of signaling across a viral envelope following receptor binding.  相似文献   

10.
Herpes simplex virus 1 (HSV-1) enters neurons primarily by fusion of the viral envelope with the host cell plasma membrane, leading to the release of the capsid into the cytosol. The capsid travels via microtubule-mediated retrograde transport to the nuclear membrane, where the viral DNA is released for replication in the nucleus. In the present study, the composition and kinetics of incoming HSV-1 capsids during entry and retrograde transport in axons of human fetal and dissociated rat dorsal root ganglia (DRG) neurons were examined by wide-field deconvolution microscopy and transmission immunoelectron microscopy (TIEM). We show that HSV-1 tegument proteins, including VP16, VP22, most pUL37, and some pUL36, dissociated from the incoming virions. The inner tegument proteins, including pUL36 and some pUL37, remained associated with the capsid during virus entry and transit to the nucleus in the neuronal cell body. By TIEM, a progressive loss of tegument proteins, including VP16, VP22, most pUL37, and some pUL36, was observed, with most of the tegument dissociating at the plasma membrane of the axons and the neuronal cell body. Further dissociation occurred within the axons and the cytosol as the capsids moved to the nucleus, resulting in the release of free tegument proteins, especially VP16, VP22, pUL37, and some pUL36, into the cytosol. This study elucidates ultrastructurally the composition of HSV-1 capsids that encounter the microtubules in the core of human axons and the complement of free tegument proteins released into the cytosol during virus entry.  相似文献   

11.
12.
Herpesviruses remodel host membranes for virus egress   总被引:1,自引:0,他引:1  
Herpesviruses replicate their DNA and package this DNA into capsids in the nucleus. These capsids then face substantial obstacles to their release from cells. Unlike other DNA viruses, herpesviruses do not depend on disruption of nuclear and cytoplasmic membranes for their release. Enveloped particles are formed by budding through inner nuclear membranes, and then these perinuclear enveloped particles fuse with outer nuclear membranes. Unenveloped capsids in the cytoplasm are decorated with tegument proteins and then undergo secondary envelopment by budding into trans-Golgi network membranes, producing infectious particles that are released. In this Review, we describe the remodelling of host membranes that facilitates herpesvirus egress.  相似文献   

13.
Herpesviral capsids are assembled in the host cell nucleus before being translocated into the cytoplasm for further maturation. The crossing of the nuclear envelope represents a major event that requires the formation of the nuclear egress complex (NEC). Previous studies demonstrated that human cytomegalovirus (HCMV) proteins pUL50 and pUL53, as well as their homologs in all members of Herpesviridae, interact with each other at the nuclear envelope and form the heterodimeric core of the NEC. In order to characterize further the viral and cellular protein content of the multimeric NEC, the native complex was isolated from HCMV-infected human primary fibroblasts at various time points and analyzed using quantitative proteomics. Previously postulated components of the HCMV-specific NEC, as well as novel potential NEC-associated proteins such as emerin, were identified. In this regard, interaction and colocalization between emerin and pUL50 were confirmed by coimmunoprecipitation and confocal microscopy analyses, respectively. A functional validation of viral and cellular NEC constituents was achieved through siRNA-mediated knockdown experiments. The important role of emerin in NEC functionality was demonstrated by a reduction of viral replication when emerin expression was down-regulated. Moreover, under such conditions, reduced production of viral proteins and deregulation of viral late cytoplasmic maturation were observed. Combined, these data prove the functional importance of emerin as an NEC component, associated with pUL50, pUL53, pUL97, p32/gC1qR, and further regulatory proteins. Summarized, our findings provide the first proteomics-based characterization and functional validation of the HCMV-specific multimeric NEC.Viruses are tightly linked to the regulatory processes governing the metabolic state of their host cells. This regulatory linkage is reflected by viral activation or silencing of gene expression and productive replication in response to cellular changes in signaling, cell cycle, apoptosis, differentiation, and other parameters. Viruses also tend to exert a strong influence on regulatory cellular pathways and the developmental fate of virus-infected tissues (1, 2). These examples of virus-cell interregulation have been studied in detail, but in many cases the essential molecular mechanisms are still poorly understood. In the field of herpesviruses, profound efforts in molecular research have been undertaken to characterize those direct protein–protein interactions that regulate cross-talk between the virus and its host. Multi-protein complexes composed of both viral and cellular constituents were identified in several stages of herpesviral lytic replication. In particular, detailed studies on the replication of human cytomegalovirus (HCMV)1 in primary fibroblasts and other permissive cell types have provided very interesting insights into the nature of chimeric multi-protein complexes. These examples were described for viral entry, viral response to intrinsic immunity, intracellular transport of viral products, nucleocytoplasmic egress of viral capsids, and other processes (36). In classical approaches, protein–protein interaction was studied by means of approved methods including yeast two-hybrid, coimmunoprecipitation (CoIP), and pulldown analyses with purified proteins. More recently, very sensitive methods have been introduced into this field, such as proteomic analysis using tandem mass spectrometry (MS/MS), confocal imaging techniques, surface plasmon resonance analysis, and others.During HCMV replication, the translocation of genome-containing viral capsids from the nucleus to the cytoplasm (nuclear egress) is one of the most crucial steps. In this process, the nuclear envelope represents a barrier consisting of three distinct elements: nuclear membranes, nuclear pores, and the proteinaceous network of the nuclear lamina. The viral capsids traverse the nuclear envelope by budding through nuclear membranes. Importantly, HCMV capsids access the inner nuclear membrane by overcoming the proteinaceous network of the nuclear lamina. To regulate the serial steps in this procedure, a multimeric protein complex is formed, termed the nuclear egress complex (NEC) (4, 7). One of the main tasks of the NEC is the distortion of the nuclear lamina. Our recent studies identified the formation of lamina-depleted areas that result from the recruitment of sophisticated enzymatic activities to these specific sites at the lamina (8). Viral and cellular effectors, such as protein kinases, a proline cis/trans isomerase, and possibly further regulatory proteins, are involved in this process (4). It is commonly accepted that the core NEC is composed of two viral proteins, namely, pUL50 and pUL53 (913). Moreover, the association of pUL50–pUL53 with a number of viral and cellular proteins supports the concept of a multimeric NEC that may include the viral protein kinase pUL97, multi-ligand binding protein p32/gC1qR, lamin B receptor, and protein kinase C (PKC) (14).In this work, we first confirmed the major role played by pUL50 and pUL53 in NEC formation. The pUL50–pUL53 core NEC was then used as bait for the identification of other NEC components at different time points post-infection. Quantitative MS-based proteomics confirmed known members of the multimeric NEC and also identified the cellular inner nuclear membrane protein emerin as a novel NEC constituent. Importantly, colocalization of emerin with the HCMV-specific NEC and its interaction with pUL50 were demonstrated for the first time. Knockdown experiments provided functional validation of the importance of emerin and other NEC proteins for HCMV replication. Together, these data provide an extended mechanistic model for the composition and function of the HCMV-specific NEC.  相似文献   

14.
Upon entry, neuroinvasive herpesviruses traffic from axon terminals to the nuclei of neurons resident in peripheral ganglia, where the viral DNA is deposited. A detailed analysis of herpes simplex virus type 1 (HSV-1) transport dynamics in axons following entry is currently lacking. Here, time lapse fluorescence microscopy was used to compare the postentry viral transport of two neurotropic herpesviruses: HSV-1 and pseudorabies virus (PRV). HSV-1 capsid transport dynamics were indistinguishable from those of PRV and did not differ in neurons of human, mouse, or avian origin. Simultaneous tracking of capsids and tegument proteins demonstrated that the composition of actively transporting HSV-1 is remarkably similar to that of PRV. This quantitative assessment of HSV-1 axon transport following entry demonstrates that HSV-1 and PRV share a conserved mechanism for postentry retrograde transport in axons and provides the foundation for further studies of the retrograde transport process.Herpes simplex virus type 1 (HSV-1) and the veterinary herpesvirus pathogen pseudorabies virus (PRV) establish latent infections within the peripheral nervous systems (PNS) of their hosts. Neurotropic herpesviruses gain access to the PNS at nerve endings present in infected skin or mucosal tissue. Upon entry at the nerve terminal, viral particles are transported in axons toward the neuronal cell body to ultimately deposit the viral genome into the nucleus. This process is referred to as retrograde transport and is critical for the establishment of latency. Following reactivation, progeny viral particles travel anterogradely from the ganglia toward the nerve terminals, resulting in reinfection of the dermis or other innervated tissues. Reactivated infection can manifest in various forms, including asymptomatic virus shedding or mild focal lesions (herpes labialis), or less frequently in more-severe disease (herpes keratitis, encephalitis, and in the case of varicella-zoster virus, shingles).All herpesviruses consist of an icosahedral capsid that contains the viral genome surrounded by a layer of proteins known as the tegument, which is contained within a membrane envelope (33). HSV-1 and PRV capsids disassociate from the viral envelope (2, 13, 14, 22, 23, 25, 28, 30, 40) and several tegument proteins (13, 16, 21, 25) upon fusion-mediated entry into cells. However, following entry into epithelial cell lines, the VP1/2 and UL37 tegument proteins are detected in association with cytosolic capsids of PRV by immunogold electron microscopy (16) and colocalize with HSV-1 capsids at the nuclear membrane by immunofluorescence microscopy (8). In primary sensory neurons, VP1/2 and UL37 are observed to be cotransported with PRV capsids during retrograde transport by time lapse fluorescence microscopy (21), and the kinetics of axon transport have been assessed (39).Although HSV-1 and PRV share similarities in their neurotropism in vivo (reviewed in reference 12), studies of axon transport have indicated possible mechanistic differences relevant to the underlying cell biology of neural transmission (reviewed in reference 10). As a result, a live-cell analysis comparing PRV and HSV-1 is needed to determine if axon transport mechanisms are conserved between the two neuroinvasive herpesvirus genera: Simplexvirus (HSV-1) and Varicellovirus (PRV). In this study, the retrograde transport process that delivers capsids to the nuclei of sensory neurons was compared for HSV-1 (strains KOS and F) and PRV (strain Becker).  相似文献   

15.
Homologs of the UL25 gene product of herpes simplex virus (HSV) have been identified in all three subfamilies of the Herpesviridae. However, their exact function during viral replication is not yet known. Whereas earlier studies indicated that the UL25 protein of HSV-1 is not required for cleavage of newly replicated viral DNA but is necessary for stable encapsidation (A. R. McNab, P. Desai, S. Person, L. Roof, D. R. Thompson, W. W. Newcomb, J. C. Brown, and F. L. Homa, J. Virol. 72:1060-1070, 1998), viral DNA packaging has recently been demonstrated to occur in the absence of UL25, although at significantly decreased levels compared to wild-type HSV-1 (N. Stow, J. Virol. 75:10755-10765 2001). To clarify the functional role of UL25 we analyzed the homologous protein of the alphaherpesvirus pseudorabies virus (PrV). PrV UL25 was found to be essential for viral replication, as a mutant virus lacking the UL25 protein required UL25-expressing cells for productive propagation. In the absence of the UL25 protein, newly replicated PrV DNA was cleaved and DNA-containing C-type capsids were detected in infected cell nuclei. However, although capsids were frequently found in close association with the inner nuclear membrane, nuclear egress was not observed. Consequently, no capsids were found in the cytoplasm, resulting in an inhibition of virion morphogenesis. In contrast, the formation of capsidless enveloped tegument structures (L particles) in the cytoplasm was readily observed. Thus, our data demonstrate that the PrV UL25 protein is not essential for cleavage and encapsidation of viral genomes, although both processes occur more efficiently in the presence of the protein. However, the presence of the PrV UL25 protein is a prerequisite for nuclear egress. By immunoelectron microscopy, we detected UL25-specific label on DNA-containing C capsids but not on other intranuclear immature or defective capsid forms. Thus, the PrV UL25 protein may represent the hitherto missing trigger that allows primary envelopment preferably of DNA-filled C capsids.  相似文献   

16.
The largest tegument protein of herpes simplex virus type 1 (HSV1), pUL36, is a multivalent cross-linker between the viral capsids and the tegument and associated membrane proteins during assembly that upon subsequent cell entry releases the incoming capsids from the outer tegument and viral envelope. Here we show that pUL36 was recruited to cytosolic progeny capsids that later colocalized with membrane proteins of herpes simplex virus type 1 (HSV1) and the trans-Golgi network. During cell entry, pUL36 dissociated from viral membrane proteins but remained associated with cytosolic capsids until arrival at the nucleus. HSV1 UL36 mutants lacking C-terminal portions of increasing size expressed truncated pUL36 but could not form plaques. Cytosolic capsids of mutants lacking the C-terminal 735 of the 3,164 amino acid residues accumulated in the cytosol but did not recruit pUL36 or associate with membranes. In contrast, pUL36 lacking only the 167 C-terminal residues bound to cytosolic capsids and subsequently colocalized with viral and host membrane proteins. Progeny virions fused with neighboring cells, but incoming capsids did not retain pUL36, nor could they target the nucleus or initiate HSV1 gene expression. Our data suggest that residues 2430 to 2893 of HSV1 pUL36, containing one binding site for the capsid protein pUL25, are sufficient to recruit pUL36 onto cytosolic capsids during assembly for secondary envelopment, whereas the 167 residues of the very C terminus with the second pUL25 binding site are crucial to maintain pUL36 on incoming capsids during cell entry. Capsids lacking pUL36 are targeted neither to membranes for virus assembly nor to nuclear pores for genome uncoating.  相似文献   

17.
The tegument of all herpesviruses contains a high-molecular-weight protein homologous to herpes simplex virus (HSV) UL36. This large (3,164 amino acids), essential, and multifunctional polypeptide is located on the capsid surface and present at 100 to 150 copies per virion. We have been testing the idea that UL36 is important for the structural organization of the tegument. UL36 is proposed to bind directly to the capsid with other tegument proteins bound indirectly by way of UL36. Here we report the results of studies carried out with HSV type 1-derived structures containing the capsid but lacking a membrane and depleted of all tegument proteins except UL36 and a second high-molecular-weight protein, UL37. Electron microscopic analysis demonstrated that, compared to capsids lacking a tegument, these capsids (called T36 capsids) had tufts of protein located at the vertices. Projecting from the tufts were thin, variably curved strands with lengths (15 to 70 nm) in some cases sufficient to extend across the entire thickness of the tegument (∼50 nm). Strands were sensitive to removal from the capsid by brief sonication, which also removed UL36 and UL37. The findings are interpreted to indicate that UL36 and UL37 are the components of the tufts and of the thin strands that extend from them. The strand lengths support the view that they could serve as organizing features for the tegument, as they have the potential to reach all parts of the tegument. The variably curved structure of the strands suggests they may be flexible, a property that could contribute to the deformable nature of the tegument.All herpesviruses have a tegument, a layer of protein located between the virus capsid and membrane. The tegument accounts for a substantial proportion of the overall virus structure. Its thickness (30 to 50 nm), for example, may be comparable to the capsid radius, and tegument proteins can account for 40% or more of the total virion protein. Herpesvirus tegument proteins are thought to function promptly after initiation of infection, before expression of virus genes can take place (11, 13, 14, 21, 33, 37).Electron microscopic analysis of virions has demonstrated that the tegument is not highly structured (9, 22). It does not have icosahedral symmetry like the capsid, and it may be uniformly or asymmetrically arranged around the capsid (26). Tegument structure is described as fibrous or granular, and its morphology is found to change as the virus matures. Studies with herpes simplex virus type 1 (HSV-1), for example, indicate that the tegument structure is altered in cell-associated compared to extracellular virus (26).The tegument has been most thoroughly studied in HSV-1, where biochemical analyses indicate that it is composed of approximately 20 distinct, virus-encoded protein species. The predominant components are the products of the genes UL47, UL48, and UL49, with each protein present in 800 or more copies per virion (12, 40). Other tegument proteins can occur in 100 or fewer copies, and trace amounts of cell-encoded proteins are also present (17). Tegument proteins are classified as inner or outer components based on their association with the capsid after it enters the host cell cytoplasm. The inner tegument proteins (UL36, UL37, and US3) are those that remain bound to the capsid after entry, while the others (the outer tegument proteins) become detached (7, 18).The HSV-1 UL36 protein has the potential to play a central role in organizing the overall structure of the tegument. With a length of 3,164 amino acids, UL36 could span the thickness of the tegument multiple times. One hundred to 150 UL36 molecules are present in the tegument (12), and they are bound to the capsid by way of an essential C-terminal domain (2, 16). UL36 is able to bind the major tegument components by way of documented direct (UL37 and UL48) and indirect (UL46, UL47, and UL49) contacts (6, 15, 24, 38).Here we describe the results of studies designed to test the idea that UL36 serves to organize the tegument structure. Beginning with infectious virus, a novel method has been used to isolate capsids that contain UL36 and UL37 but lack the virus membrane and are depleted of all other tegument proteins. These capsids (T36 capsids) were examined by electron microscopy to clarify the structure of UL36 and UL37 molecules and their location on the capsid surface.  相似文献   

18.
Herpes simplex virus (HSV) entry requires host cell 26S proteasomal degradation activity at a postpenetration step. When expressed in the infected cell, the HSV immediate-early protein ICP0 has E3 ubiquitin ligase activity and interacts with the proteasome. The cell is first exposed to ICP0 during viral entry, since ICP0 is a component of the inner tegument layer of the virion. The function of tegument ICP0 is unknown. Deletion of ICP0 or mutations in the N-terminal RING finger domain of ICP0 results in the absence of ICP0 from the tegument. We show here that these mutations negatively influenced the targeting of incoming capsids to the nucleus. Inhibitors of the chymotrypsin-like activity of the proteasome the blocked entry of virions containing tegument ICP0, including ICP0 mutants that are defective in USP7 binding. However, ICP0-deficient virions were not blocked by proteasomal inhibitors and entered cells via a proteasome-independent mechanism. ICP0 appeared to play a postpenetration role in cells that supported either endocytosis or nonendosomal entry pathways for HSV. The results suggest that ICP0 mutant virions are defective upstream of viral gene expression at a pre-immediate-early step in infection. We propose that proteasome-mediated degradation of a virion or host protein is regulated by ICP0 to allow efficient delivery of entering HSV capsids to the nuclear periphery.  相似文献   

19.
During nuclear egress, herpesvirus capsids bud at the inner nuclear membrane forming perinuclear viral particles that subsequently fuse with the outer nuclear membrane, releasing capsids into the cytoplasm. This unusual budding process is mediated by the nuclear egress complex (NEC) composed of two conserved viral proteins, UL31 and UL34. Earlier, we discovered that the herpesvirus nuclear egress complex (NEC) could bud synthetic membranes in vitro without the help of other proteins by forming a coat‐like hexagonal scaffold inside the budding membrane. To understand the structural basis of NEC‐mediated membrane budding, we determined the crystal structures of the NEC from two herpesviruses. The hexagonal lattice observed in the NEC crystals recapitulates the honeycomb coats within the budded vesicles. Perturbation of the oligomeric interfaces through mutagenesis blocks budding in vitro confirming that NEC oligomerization into a honeycomb lattice drives budding. The structure represents the first atomic‐level view of an oligomeric array formed by a membrane‐deforming protein, making possible the dissection of its unique budding mechanism and the design of inhibitors to block it.  相似文献   

20.
Transport of capsids in cells is critical to alphaherpesvirus infection and pathogenesis; however, viral factors required for transport have yet to be identified. Here we provide a detailed examination of capsid dynamics during the egress phase of infection in Vero cells infected with pseudorabies virus. We demonstrate that the VP1/2 tegument protein is required for processive microtubule-based transport of capsids in the cytoplasm. A second tegument protein that binds to VP1/2, UL37, was necessary for wild-type transport but was not essential for this process. Both proteins were also required for efficient nuclear egress of capsids to the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号