首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic field‐effect transistors (OFETs) are the basic elements of organic circuits towards flexible, printable, and wearable electronics. Low‐energy‐consumption OFETs with high mobility are the prerequisite for practical applications. After 30 years of development, OFETs have progressed rapidly, from field‐effect materials to devices, and from individual device to small‐ and medium‐scale integration. Here, a brief retrospective of OFETs' development over the past decades, and the emerging opportunities and challenges from device physics, multifunctional materials to integrated application are presented.  相似文献   

2.
Li‐ion batteries as energy storage devices need to be periodically charged for sustainably powering electronic devices owing to their limited capacities. Here, the feasibility of utilizing Li‐ion batteries as both the energy storage and scavenging units is demonstrated. Flexible Li‐ion batteries fabricated from electrospun LiMn2O4 nanowires as cathode and carbon nanowires as anode enable a capacity retention of 90% coulombic efficiency after 50 cycles. Through the coupling between triboelectrification and electrostatic induction, the adjacent electrodes of two Li‐ion batteries can deliver an output peak voltage of about 200 V and an output peak current of about 25 µA under ambient wind‐induced vibrations of a hexafluoropropene–tetrafluoroethylene copolymer film between the two Li‐ion batteries. The self‐charging Li‐ion batteries have been demonstrated to charge themselves up to 3.5 V in about 3 min under wind‐induced mechanical excitations. The advantages of the self‐charging Li‐ion batteries can provide important applications for sustainably powering electronics and self‐powered sensor systems.  相似文献   

3.
4.
Functional nanomaterials are playing a crucial role in the emerging field of energy‐related devices. Recently, as a novel synthesis method, high‐temperature shock (HTS), which is rapid, low cost, eco‐friendly, universal, scalable, and controllable, has provided a promising option for the rational design and synthesis of various high‐quality nanomaterials. In this report, the HTS technique, including the equipment setup and operating principle, is systematically introduced, and recent progress in the synthesis of nanomaterials for energy storage and conversion applications using this HTS method is summarized. The growth mechanisms of nanoparticles and carbonaceous nanomaterials are thoroughly discussed, followed by the summary of the characteristic advantages of the HTS strategy. A series of nanomaterials prepared by the HTS method, including carbon‐based films, metal nanoparticles and compound nanoparticles, show high performance in the diverse applications of storage energy batteries, highly active catalysts, and smart energy devices. Finally, the future perspectives and directions of HTS in nanomanufacturing for broader applications are presented.  相似文献   

5.
A non‐aqueous lithium‐ion redox flow battery employing organic molecules is proposed and investigated. 2,5‐Di‐tert‐butyl‐1,4‐bis(2‐methoxyethoxy)benzene and a variety of molecules derived from quinoxaline are employed as initial high‐potential and low‐potential active materials, respectively. Electrochemical measurements highlight that the choice of electrolyte and of substituent groups can have a significant impact on redox species performance. The charge‐discharge characteristics are investigated in a modified coin‐cell configuration. After an initial break‐in period, coulombic and energy efficiencies for this unoptimized system are ~70% and ~37%, respectively, with major charge and discharge plateaus between 1.8‐2.4 V and 1.7‐1.3 V, respectively, for 30 cycles. Performance enhancements are expected with improvements in cell design and materials processing.  相似文献   

6.
7.
Ca‐ion batteries (CIBs) show promise to achieve the high energy density required by emerging applications like electric vehicles because of their potentially improved capacities and high operating voltages. The development of CIBs is hindered by the failure of traditional graphite and calcium metal anodes due to the intercalation difficulty and the lack of efficient electrolytes. Recently, a high voltage (4.45 V) CIB cell using Sn as the anode has been reported to achieve a remarkable cyclability (>300 cycles). The calciation of Sn is observed to end at Ca7Sn6, which is surprising, since higher Ca‐content compounds are known (e.g., Ca2Sn). Here, the Sn electrochemical calciation reaction process is investigated computationally and the reaction driving force as a function of Ca content is explored using density functional theory (DFT) calculations. This exploration allows the identification of threshold voltages which govern the limits of the calciation process. This information is then used to design a four‐step screening strategy and high‐throughput DFT is utilized to search for anode materials with higher properties. Many metalloids (Si, Sb, Ge), (post‐)transition metals (Al, Pb, Cu, Cd, CdCu2) are predicted to be promising inexpensive anode candidates and warrant further experimental investigations.  相似文献   

8.
Emergence of thousands of crystal structures of noncoding RNA molecules indicates its structural and functional diversity. RNA function is based upon a large variety of structural elements which are specifically assembled in the folded molecules. Along with the canonical Watson‐Crick base pairs, different orientations of the bases to form hydrogen‐bonded non‐canonical base pairs have also been observed in the available RNA structures. Frequencies of occurrences of different non‐canonical base pairs in RNA indicate their important role to maintain overall structure and functions of RNA. There are several reports on geometry and energetic stabilities of these non‐canonical base pairs. However, their stacking geometry and stacking stability with the neighboring base pairs are not well studied. Among the different non‐canonical base pairs, the G:U wobble base pair (G:U W:WC) is most frequently observed in the RNA double helices. Using quantum chemical method and available experimental data set we have studied the stacking geometry of G:U W:WC base pair containing dinucleotide sequences in roll‐slide parameters hyperspace for different values of twist. This study indicates that the G:U W:WC base pair can stack well with the canonical base pairs giving rise to large interaction energy. The overall preferred stacking geometry in terms of roll, twist and slide for the eleven possible dinucleotide sequences is seen to be quite dependent on their sequences. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 328–338, 2015.  相似文献   

9.
It is presented for the first time nontoxic CuGaS2/ZnS quantum dots (QDs) with free‐self‐reabsorption losses and large Stokes shift (>190 nm) synthesized on an industrially gram‐scale as an alternative for Cd‐based energy‐downshift (EDS)‐QD layers. The QDs exhibit a typical EDS that absorbs only UV light (<407 nm) and emits the whole range of visible light (400–800 nm) with a high photoluminescence‐quantum yield of ≈76%. The straightforward application of these EDS‐QDs on the front surface of a monocrystalline p‐type silicon solar cell significantly enhances the short‐circuit current density by ≈1.64 mA cm?2 (+4.20%); thereby, improving the power‐conversion‐efficiency by ≈4.11%. The significant improvement in the external quantum efficiency increases by ≈35.7% and that in the surface reflectance decreases by ≈14.1% in the UV region (300–450 nm) clearly manifest the photovoltaic enhancement. Such promising results together with the simple (one‐pot core/shell synthesis), cost‐effective (reduction in a bill of material–system by ≈2.62%), and scalable (2000 mL three‐neck flask, 11 g of QDs) preparation process might encourage the manufacturers of solar cells and other optoelectronic applications to apply these EDS‐QDs to different broader eco‐friendly applications.  相似文献   

10.
Hole‐transporting materials (HTMs) are essential for enabling highly efficient perovskite solar cells (PVSCs) to extract and transport the hole carriers. Among numerous HTMs that are studied so far, the single‐spiro‐based compounds are the most frequently used HTMs for achieving highly efficient PVSCs. In fact, all the new spiro‐based HTMs reported so far that render PVSCs over 20% are based on spiro[fluorene‐9,9′‐xanthene] or spiro [cyclopenta [2,1‐b:3,4b′]dithiophene‐4,9′‐fluorene] cores; therefore, there is a need to diversify the design of their structures for further improving their function and performance. In addition, the fundamental understanding of structure–performance relationships for the spiro‐based HTMs is still lagging, for example, how molecular configuration, spiro numbers, and heteroatoms in spiro‐rings impact the efficacy of HTMs. To address these needs, two novel H‐shaped HTMs, G1 and G2 based on the di‐spiro‐rings as the cores are designed and synthesized. The combined good film‐forming properties, better interactions with perovskite, slightly deeper highest occupied molecular orbital, higher mobility and conductivity, as well as more efficient charge transfer for G2 help devices reach a very impressive power conversion efficiency of 20.2% and good stability. This is the first report of demonstrating the feasibility of using di‐spiro‐based HTMs for highly efficient PVSCs.  相似文献   

11.
“The Same‐Acceptor‐Strategy” (SAS) adopts benzotriazole (BTA)‐based p‐type polymers paired with a new BTA based non‐fullerene acceptor BTA13 to minimize the trade‐off between the open‐circuit voltage (VOC) and short circuit current (JSC). The fluorination and sulfuration are introduced to lower the highest occupied molecular orbitals (HOMO) of the polymers. The fluorinated polymer of J52‐F shows the higher power conversion efficiency (PCE) of 8.36% than the analog polymer of J52, benefited from a good balance between an improved VOC of 1.18 V and a JSC of 11.55 mA cm?2. Further adding alkylthio groups on J52‐F, the resulted polymer, J52‐FS, exhibits the highest VOC of 1.24 V with a decreased energy loss of 0.48 eV, compared with 0.67 eV for J52 and 0.54 eV for J52‐F. However, J52‐FS shows an inferior PCE (3.84%) with a lower JSC of 6.74 mA cm?2, because the small ΔEHOMO between J52‐FS and BTA13 (0.02 eV) gives rise to the inefficient hole transfer and high charge recombination, as well as low carrier mobilities. The results of this study clearly demonstrate that the introduction of different atoms in p‐type polymers is effective to improve the SAS and realize the high (VOC) and PCE.  相似文献   

12.
Composites of polypyrrole (PPy) and Cladophora nanocellulose, reinforced with 8 μm‐thick chopped carbon filaments, can be used as electrode materials to obtain paper‐based energy‐storage devices with unprecedented performance at high charge and discharge rates. Charge capacities of more than 200 C g?1 (PPy) are obtained for paper‐based electrodes at potential scan rates as high as 500 mV s?1, whereas cell capacitances of ~60–70 F g?1 (PPy) are reached for symmetric supercapacitor cells with capacitances up to 3.0 F (i.e.,0.48 F cm?2) when charged to 0.6 V using current densities as high as 31 A g?1 based on the PPy weight (i.e., 99 mA cm?2). Energy and power densities of 1.75 Wh kg?1 and 2.7 kW kg?1, respectively, are obtained when normalized with respect to twice the PPy weight of the smaller electrode. No loss in cell capacitance is seen during charging/discharging at 7.7 A g?1 (PPy) over 1500 cycles. It is proposed that the nonelectroactive carbon filaments decrease the contact resistances and the resistance of the reduced PPy composite. The present straightforward approach represents significant progress in the development of low‐cost and environmentally friendly paper‐based energy‐storage devices for high‐power applications.  相似文献   

13.
14.
Secondary batteries based on metal anodes (e.g., Li, Na, Mg, Zn, and Al) are among the most sought‐after candidates for next‐generation mobile and stationary storage systems because they are able to store a larger amount of energy per unit mass or volume. However, unstable electrodeposition and uncontrolled interfacial reactions occuring in liquid electrolytes cause unsatisfying cell performance and potential safety concerns for the commercial application of these metal anodes. Solid‐state electrolytes (SSEs) having a higher modulus are considered capable of inhibiting difficulties associated with the anodes and may enable building of safe all‐solid‐state metal batteries, yet several challenges, such as insufficient room‐temperature ionic conductivity and poor interfacial stability between the electrode and the electrolyte, hinder the large‐scale development of such batteries. Here, research and development of SSEs including inorganic ceramics, organic solid polymers, and organic–inorganic hybrid/composite materials for metal‐based batteries are reviewed. The comparison of different types of electrolytes is discussed in detail, in the context of electrochemical energy storage applications. Then, the focus of this study is on recent advances in a range of attractive and innovative battery chemistries and technologies that are enabled by SSEs. Finally, the challenges and future perspectives are outlined to foresee the development of SSEs.  相似文献   

15.
Lithium‐ion batteries (LIBs) have dominated the portable electronics industry and solid‐state electrochemical research and development for the past two decades. In light of possible concerns over the cost and future availability of lithium, sodium‐ion batteries (SIBs) and other new technologies have emerged as candidates for large‐scale stationary energy storage. Research in these technologies has increased dramatically with a focus on the development of new materials for both the positive and negative electrodes that can enhance the cycling stability, rate capability, and energy density. Two‐dimensional (2D) materials are showing promise for many energy‐related applications and particularly for energy storage, because of the efficient ion transport between the layers and the large surface areas available for improved ion adsorption and faster surface redox reactions. Recent research highlights on the use of 2D materials in these future ‘beyond‐lithium‐ion’ battery systems are reviewed, and strategies to address challenges are discussed as well as their prospects.  相似文献   

16.
Piezoelectric ZnO nanorods grown on a flexible substrate are combined with the p‐type semiconducting polymer PEDOT:PSS to produce a p‐n junction device that successfully demonstrates kinetic‐to‐electrical energy conversion. Both the voltage and current output of the devices are measured to be in the range of 10 mV and 10 μA cm?2. Combining these figures for the best device gives a maximum possible power density of 0.4 mW cm?3. Systematic testing of the devices is performed showing that the voltage output increases linearly with applied stress, and is reduced significantly by illumination with super‐band gap light. This provides strong evidence that the voltage output results from piezoelectric effects in the ZnO. The behavior of the devices is explained by considering the time‐dependent changes in band structure resulting from the straining of a piezoelectric material within a p‐n junction. It is shown that the rate of screening of the depolarisation field determines the power output of a piezoelectric energy harvesting device. This model is consistent with the behavior of a number of previous devices utilising the piezoelectric effect in ZnO.  相似文献   

17.
Implantable medical devices (IMDs) have experienced a rapid progress in recent years to the advancement of state‐of‐the‐art medical practices. However, the majority of this equipment requires external power sources like batteries to operate, which may restrict their application for in vivo situations. Furthermore, these external batteries of the IMDs need to be changed at times by surgical processes once expired, causing bodily and psychological annoyance to patients and rising healthcare financial burdens. Currently, harvesting biomechanical energy in vivo is considered as one of the most crucial energy‐based technologies to ensure sustainable operation of implanted medical devices. This review aims to highlight recent improvements in implantable triboelectric nanogenerators (iTENG) and implantable piezoelectric nanogenerators (iPENG) to drive self‐powered, wireless healthcare systems. Furthermore, their potential applications in cardiac monitoring, pacemaker energizing, nerve‐cell stimulating, orthodontic treatment and real‐time biomedical monitoring by scavenging the biomechanical power within the human body, such as heart beating, blood flowing, breathing, muscle stretching and continuous vibration of the lung are summarized and presented. Finally, a few crucial problems which significantly affect the output performance of iTENGs and iPENGs under in vivo environments are addressed.  相似文献   

18.
Solar‐intercalation batteries, which are able to both harvest and store solar energy within the electrodes, are a promising technology for the more efficient utilization of intermittent solar radiation. However, there is a lack of understanding on how the light‐induced intercalation reaction occurs within the electrode host lattice. Here, an in operando synchrotron X‐ray diffraction methodology is introduced, which allows for real‐time visualization of the structural evolution process within a solar‐intercalation battery host electrode lattice. Coupled with ex situ material characterization, direct correlations between the structural evolution of MoO3 and the photo‐electrochemical responses of the solar‐intercalation batteries are established for the first time. MoO3 is found to transform, via a two‐phase reaction mechanism, initially into a sodium bronze phase, Na0.33MoO3, followed by the formation of solid solutions, NaxMoO3 (0.33 < x < 1.1), on further photointercalation. Time‐resolved correlations with the measured voltages indicate that the two‐phase evolution reaction follows zeroth‐order kinetics. The insights achieved from this study can aid the development of more advanced photointercalation electrodes and solar batteries with greater performances.  相似文献   

19.
Calcium‐ion batteries (CIBs) are promising energy storage devices due to the merits of natural abundance, similar standard reduction potential to lithium, and bivalent‐ion characteristic of calcium. However, the development of CIBs is hindered by the low rate capability and poor cycling performance at room temperature. Here, a highly reversible room‐temperature calcium‐ion based hybrid battery is realized by a tri‐ion strategy, which significantly improves the diffusion kinetics of calcium ions. The optimized CIB shows high rate capability of 15 C as well as excellent cycling stability over 1500 cycles with 86% capacity retention at 5 C, at room temperature, which is the best result of reported calcium‐ion based full batteries.  相似文献   

20.
Dielectric capacitors are receiving a great deal of attention for advanced pulsed power owing to their high power density and quick charge/discharge rate. However, the energy density is limited and the efficiency and the thermal stability are also not ideal, which has been a longstanding obstacle to developing desirable dielectric materials. These concerns have are addressed herein by fabricating nanodomain‐engineered BiFeO3‐BaTiO3‐NaNbO3 bulk ferroelectrics, integrating a high‐spontaneous‐polarization gene, wide band gaps, and a heterogeneous nanodomain structure, generating record‐excellent comprehensive performance of giant energy‐storage density Wrec ≈8.12 J cm?3, high efficiency η ≈90% and excellent thermal stability (±10%, ?50 to 250 °C) and ultrafast discharge rate (t0.9 < 100 ns). Significantly enhanced dielectric breakdown strength of BiFeO3‐based solid solutions is mainly attributed to the substitution of NaNbO3, which provides an increased band gap, refined grain size, and increased resistivity. The formation of nanoscale domains as evidenced by piezoresponse force microscopy and transmission electron microscopy enables nearly hysteresis‐free polarization‐field response and temperature‐insensitive dielectric response. In comparison with antiferroelectric capacitors, the current work provides a new solution to successfully design next‐generation pulsed power capacitors by fully utilizing relaxor ferroelectrics in energy‐storage efficiency and thermal stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号