首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Noscapine biosynthesis in opium poppy is thought to occur via N-methylcanadine, which would be produced through 9-O-methylation of (S)-scoulerine, methylenedioxy bridge formation on (S)-tetrahydrocolumbamine, and N-methylation of (S)-canadine. Only scoulerine 9-O-methyltransferase has been functionally characterized. We report the isolation and characterization of a cytochrome P450 (CYP719A21) from opium poppy that converts (S)-tetrahydrocolumbamine to (S)-canadine. Recombinant CYP719A21 displayed strict substrate specificity and high affinity (Km = 4.63 ± 0.71 μM) for (S)-tetrahydrocolumbamine. Virus-induced gene silencing of CYP719A21 caused a significant increase in (S)-tetrahydrocolumbamine accumulation and a corresponding decrease in the levels of putative downstream intermediates and noscapine in opium poppy plants.  相似文献   

7.
Iranian (Papaver bracteatum Lindl.) and opium poppy (P. somniferum L.) plantlets obtained from germinated seeds grown on a Murashige and Skoog basal medium (BM) readily manifest alkaloids. Temperature had a profound effect on growth and alkaloid production after 8 weeks in culture. Plantlets of poppy cultivars (cvs.) grew best at 18.5 and 20°C compared to 15 or 25°C. An alkaloid survey study with 24 Iranian and 21 opium poppy cvs. revealed that total morphinan alkaloids ranged from 0 to 6.55 mg/g dw. Prolific axillary branching was achieved from poppy cvs. by maintaining shoots on BM containing 1.0 mg/L N6‐benzyladenine and 0.01 mg/L α‐naphthalene acetic acid for an additional 16 weeks. The influence of vessel size on the growth response of established shoot clumps was determined by subculture in a variety of culture vessels for 8 weeks. The tested culture vessels included culture tubes (55 mm3 capacity (cap.)), babyfood jars (143 mm3 cap.), Magenta GA‐7 containers (365 mm3 cap.), and polycarbonate jars (1890 mm3 cap.) employing an in vitro hydroponics system (i.e. an automated plant culture system (APCS)). Highest growth rates occurred employing the APCS. The culture vessel capacity had a significant positive correlation on shoot length, fresh weight, number of leaves, and number of shoots. Shoot length, fresh weight, leaves, and shoots grown in the APCS exhibited increases of 1‐, 21.5‐, 7.8‐, and 8.3‐fold, respectively, compared to shoots grown in culture tubes. Higher culture growth rates that occurred in the larger‐size vessels were correlated with lower alkaloid production (mg alkaloids/g dw). However, the overall total alkaloids/vessel [(mg alkaloid/g dw)×g culture dw] increased because of greater biomass production per vessel. The alkaloid content was found to remain stable for shoots grown over a 6–month evaluation period.  相似文献   

8.
9.
10.
11.
Opium poppy (Papaver somniferum) is one of the world’s oldest medicinal plants and remains the only commercial source for the narcotic analgesics morphine, codeine and semi-synthetic derivatives such as oxycodone and naltrexone. The plant also produces several other benzylisoquinoline alkaloids with potent pharmacological properties including the vasodilator papaverine, the cough suppressant and potential anticancer drug noscapine and the antimicrobial agent sanguinarine. Opium poppy has served as a model system to investigate the biosynthesis of benzylisoquinoline alkaloids in plants. The application of biochemical and functional genomics has resulted in a recent surge in the discovery of biosynthetic genes involved in the formation of major benzylisoquinoline alkaloids in opium poppy. The availability of extensive biochemical genetic tools and information pertaining to benzylisoquinoline alkaloid metabolism is facilitating the study of a wide range of phenomena including the structural biology of novel catalysts, the genomic organization of biosynthetic genes, the cellular and sub-cellular localization of biosynthetic enzymes and a variety of biotechnological applications. In this review, we highlight recent developments and summarize the frontiers of knowledge regarding the biochemistry, cellular biology and biotechnology of benzylisoquinoline alkaloid biosynthesis in opium poppy.  相似文献   

12.
Noscapine, a phthalideisoquinoline alkaloid derived from opium, has been used as an oral anti-tussive agent and has shown very few toxic effects in animals or humans. Recently, we reported that noscapine binds stoichiometrically to tubulin and promotes microtubule polymerization. Noscapine causes growth arrest of tumor cells in mitosis and induces apoptosis of tumor cells in vitro. Previous experiments also showed that noscapine has potent antitumor activity in mice when administered parenterally or by gastric lavage. Here, we report that the anti-mitotic effect was specific to noscapine since closely related compounds did not inhibit the growth of a lymphoma cell line. In addition, noscapine was shown to be effective in reducing the growth of the lymphoma and increasing the survival of tumor-bearing mice when administered in the drinking water. It is noteworthy that, noscapine showed little or no toxicity to kidney, liver, heart, bone marrow, spleen or small intestine at tumor-suppressive doses. Furthermore, oral noscapine did not inhibit primary immune responses, which are critically dependent upon proliferation of lymphoid cells. Thus, our results indicate that noscapine has the potential to be an effective chemotherapeutic agent for the treatment of human cancer. Received: 20 October 1999 / Accepted: 10 February 2000  相似文献   

13.
Noscapine, a phthalide isoquinoline alkaloid derived from opium, has been widely used as a cough suppressant for decades. Noscapine has recently been shown to potentiate the anti-cancer effects of several therapies by inducing apoptosis in various malignant cells without any detectable toxicity in cells or tissues. However, the mechanism by which noscapine induces apoptosis in colon cancer cells remains unclear. The signaling pathways by which noscapine induces apoptosis were investigated in colon cancer cell lines treated with various noscapine concentrations for 72 h, and a dose-dependent inhibition of cell viability was observed. Noscapine effectively inhibited the proliferation of LoVo cells in vitro (IC(50)=75 μM). This cytotoxicity was reflected by cell cycle arrest at G(2)/M and subsequent apoptosis, as indicated by increased chromatin condensation and fragmentation, the upregulation of Bax and cytochrome c (Cyt-c), the downregulation of survivin and Bcl-2, and the activation of caspase-3 and caspase-9. Moreover, in a xenograft tumor model in mice, noscapine injection clearly inhibited tumor growth via the induction of apoptosis, which was demonstrated using a TUNEL assay. These results suggest that noscapine induces apoptosis in colon cancer cells via mitochondrial pathways. Noscapine may be a safe and effective chemotherapeutic agent for the treatment of human colon cancer.  相似文献   

14.
15.
Spongospora subterranea, which causes powdery scab of potato, infects a diverse range of plant species. Crop rotation as a powdery scab management tool will be compromised if pathogen hosts exist between potato crops. Opium poppy (Papaver somniferum) and pyrethrum (Tanacetum cinerariifolium) are important crops within intensive vegetable production rotations in NW Tasmania. Measurements of S. subterranea soil inoculum within a commercial field showed pathogen amounts were substantially elevated following an opium poppy crop, which suggested host status. In glasshouse testing, opium poppy and pyrethrum were confirmed as hosts of S. subterranea, with opium poppy the more susceptible of the two. Both species were less susceptible than tomato, a known host. Observations of early growth suggested inoculation impacts on all three plant species, although at 16 (tomato and opium poppy) or 26 (pyrethrum) weeks postinoculation, only tomato had significantly reduced shoot and root development. The role of rotation crops in inoculum persistence and the possible role of S. subterranea as a minor pathogen of nonpotato crops are discussed.  相似文献   

16.

Background  

Opium poppy (Papaver somniferum) produces a diverse array of bioactive benzylisoquinoline alkaloids and has emerged as a model system to study plant alkaloid metabolism. The plant is cultivated as the only commercial source of the narcotic analgesics morphine and codeine, but also produces many other alkaloids including the antimicrobial agent sanguinarine. Modulations in plant secondary metabolism as a result of environmental perturbations are often associated with the altered regulation of other metabolic pathways. As a key component of our functional genomics platform for opium poppy we have used proton nuclear magnetic resonance (1H NMR) metabolomics to investigate the interplay between primary and secondary metabolism in cultured opium poppy cells treated with a fungal elicitor.  相似文献   

17.
Summary Opium poppy (Papaver somniferum L.) contains a number of pharmaceutically important alkaloids of the benzylisoquinoline type including morphine, codeine, papaverine, and sanguinarine. Although these alkaloids accumulate to high concentrations in various organs of the intact plant, only the phytoalexin sanguinarine has been found at significant levels in opium poppy cell cultures. Moreover, even sanguinarine biosynthesis is not constitutive in poppy cell suspension cultures, but is typically induced only after treatment with a funga-derived elicitor. The absence of appreciable quantities of alkaloids in dedifferentiated opium poppy cell cultures suggests that benzylisoquinoline alkaloid biosynthesis is developmentally regulated and requires the differentiation of specific tissues. In the 40 yr since opium poppy tissues were first culturedin vitro, a number of reports on the redifferentiation of roots and buds from callus have appeared. A requirement for the presence of specialized laticifer cells has been suggested before certain alkaloids, such as morphine and codeine, can accumulate. Laticifers represent a complex internal secretory system in about 15 plant families and appear to have multiple evolutionary origins. Opium poppy laticifers differentiate from procambial cells and undergo articulation and anastomosis to form a continuous network of elements associated with the phloem throughout much of the intact plant. Latex is the combined cytoplasm of fused laticifer vessels, and contains numerous large alkaloid vesicles in which latex-associated poppy alkaloids are sequestered. The formation of alkaloid vesicles, the subcellular compartmentation of alkaloid biosynthesis, and the tissue-specific localization and control of these processes are important unresolved problems in plant cell biology. Alkaloid biosynthesis in opium poppy is an excellent model system to investigate the developmental regulation and cell biology of complex metabolic pathways, and the relationship between metabolic regulation and cell-type specific differentiation. In this review, we summarize the literature on the roles of cellular differentiation and plant development in alkaloid biosynthesis in opium poppy plants and tissue cultures.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号