首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to the high cost of silicon photovoltaics there is currently great interest in finding alternative semiconductor materials for light harvesting devices. Single‐walled carbon nanotubes are an allotrope of carbon with unique electrical and optical properties and are promising as future photovoltaic materials. It is thus important to investigate the methods of exploiting their properties in photovoltaic devices. In addition to already extensive research using carbon nanotubes in organic photovoltaics and photoelectrochemical cells, another way to do this is to combine them with a relatively well understood model semiconductor such as silicon. Nanotube‐silicon heterojunction solar cells are a recent photovoltaic architecture with demonstrated power conversion efficiencies of up to ~14% that may in part exploit the photoactivity of carbon nanotubes.  相似文献   

2.
This study reports a scalable and room‐temperature solid‐state redox functionalization process for single‐walled carbon nanotubes (SWNTs) with instant efficacy and high stability. By drop‐casting/spin‐coating CuCl2/Cu(OH)2 colloidal ethanol solution onto SWNT films, the sheet resistance of the SWNT films achieves 69.4 Ω sq?1 at 90% transparency without noticeable increase for more than 12 months. The charge transfer mechanism between the redox and the SWNTs is revealed by Raman and X‐ray photoelectron spectroscopies. The SWNT/silicon solar cells are utilized as a benchmark to evaluate the effectiveness of the redox functionalization process and its compatibility for device integration. The power conversion efficiency of the SWNT/Si solar cell increases by 115% after redox functionalization, reaching the value of 14.09% without degradation in the ambient for over 12 months. Temperature‐dependent operation characteristics of the redox functionalized SWNT/Si solar cells demonstrate that the Fermi level unpinning and enhanced tunneling of the charge carriers contribute to the significant improvement of the photovoltage and fill factor. The CuCl2/Cu(OH)2 redox also serves as an antireflection layer, resulting in a 20% increase of the photocurrent. The proposed redox functionalized SWNTs are promising as multifunctional transparent conductive films for wide‐range solar cell applications.  相似文献   

3.
Triplet exciton (TE) formation pathways are systematically investigated in prototype bulk heterojunction (BHJ) “super yellow” poly(p‐phenylene vinylene) (SY‐PPV) solar cell devices with varying fullerene compositions using complementary optoelectrical and electrically detected magnetic resonance (EDMR) spectroscopies. It is shown that EDMR spectroscopy allows the unambiguous demonstration of fullerene triplet production in BHJ polymer:fullerene solar cells. EDMR triplet detection under selective photoexcitation of each blend component and of the interfacial charge transfer (CT) state reveals that low lying fullerene TEs are produced by direct intersystem crossing from singlet excitons (SEs). The direct CT‐TE recombination pathway, although energetically feasible, is kinetically suppressed in these devices. However, high energy CT states in the CT manifold can contribute to the population of the fullerene triplet state via a direct CT‐SE conversion. This undesirable energetic alignment could be one of the causes for the severe reduction in photocurrent observed when the open‐circuit voltage of polymer:fullerene solar cells is pushed to 1.0 V or beyond.  相似文献   

4.
Double‐walled carbon nanotubes are between single‐walled carbon nanotubes and multiwalled carbon nanotubes. They are comparable to single‐walled carbon nanotubes with respect to the light optical density, but their mechanical stability and solubility are higher. Exploiting such advantages, solution‐processed transparent electrodes are demonstrated using double‐walled carbon nanotubes and their application to perovskite solar cells is also demonstrated. Perovskite solar cells which harvest clean solar power have attracted a lot of attention as a next‐generation renewable energy source. However, their eco‐friendliness, cost, and flexibility are limited by the use of transparent oxide conductors, which are inflexible, difficult to fabricate, and made up of expensive rare metals. Solution‐processed double‐walled carbon nanotubes can replace conventional transparent electrodes to resolve such issues. Perovskite solar cells using the double‐walled carbon nanotube transparent electrodes produce an operating power conversion efficiency of 17.2% without hysteresis. As the first solution‐processed electrode‐based perovskite solar cells, this work will pave the pathway to the large‐size, low‐cost, and eco‐friendly solar devices.  相似文献   

5.
The large voltage losses usually encountered in organic solar cells significantly limit the power conversion efficiencies (PCEs) of these devices, with the result that the current highest PCE values in single‐junction organic photovoltaic remain smaller than for other solar cell technologies, such as crystalline silicon or perovskite solar cells. In particular, the nonradiative recombinations to the electronic ground state from the lowest‐energy charge‐transfer (CT) states at the donor–acceptor interfaces in the active layer of organic devices, are responsible for a significant part of the voltage losses. Here, to better comprehend the nonradiative voltage loss mechanisms, a fully quantum‐mechanical rate formula is employed within the framework of time‐dependent perturbation theory, combined with density functional theory. The objective is to uncover the specific contributions of intramolecular vibrations to the CT‐state nonradiative recombinations in several model systems, which include small‐molecule and polymer donors as well as fullerene and nonfullerene acceptors.  相似文献   

6.
Stretchable solar cells are of growing interest due their key role in realizing many applications such as wearables and biomedical devices. Ultrastretchability, high energy‐efficiency, biocompatibility, and mechanical resilience are essential characteristics of such energy harvesting devices. Here, the development of wafer‐scale monocrystalline silicon solar cells with world‐record ultrastretchability (95%) and efficiency (19%) is demonstrated using a laser‐patterning based corrugation technique. The demonstrated approach transforms interdigitated back contacts (IBC) based rigid solar cells into mechanically reliable but ultrastretchable cells with negligible degradation in the electric performance in terms of current density, open‐circuit voltage, and fill factor. The corrugation method is based on the creation of alternating grooves resulting in silicon islands with different shapes. The stretchability is achieved by orthogonally aligning the active silicon islands to the applied tensile stress and using a biocompatible elastomer (Ecoflex) as a stretchable substrate. The resulting mechanics ensure that the brittle silicon areas do not experience significant mechanical stresses upon asymmetrical stretching. Different patterns are studied including linear, diamond, and triangular patterns, each of which results in a different stretchability and loss of active silicon area. Finally, finite element method based simulation is conducted to study the generated deformation in the different patterned solar cells.  相似文献   

7.
Perovskite/silicon tandem solar cells are attractive for their potential for boosting cell efficiency beyond the crystalline silicon (Si) single‐junction limit. However, the relatively large optical refractive index of Si, in comparison to that of transparent conducting oxides and perovskite absorber layers, results in significant reflection losses at the internal junction between the cells in monolithic (two‐terminal) devices. Therefore, light management is crucial to improve photocurrent absorption in the Si bottom cell. Here it is shown that the infrared reflection losses in tandem cells processed on a flat silicon substrate can be significantly reduced by using an optical interlayer consisting of nanocrystalline silicon oxide. It is demonstrated that 110 nm thick interlayers with a refractive index of 2.6 (at 800 nm) result in 1.4 mA cm?² current gain in the silicon bottom cell. Under AM1.5G irradiation, the champion 1 cm2 perovskite/silicon monolithic tandem cell exhibits a top cell + bottom cell total current density of 38.7 mA cm?2 and a certified stabilized power conversion efficiency of 25.2%.  相似文献   

8.
Emerging solar cells, namely, organic solar cells and perovskite solar cells, are the thin‐film photovoltaics that have light to electricity conversion efficiencies close to that of silicon solar cells while possessing advantages in having additional functionalities, facile‐processability, and low fabrication cost. To maximize these advantages, the electrode components must be replaced by materials that are more flexible and cost‐effective. Researchers around the globe have been looking for the new electrodes that meet these requirements. Among many candidates, single‐walled carbon nanotubes have demonstrated their feasibility as the new alternative to conventional electrodes, such as indium tin oxide and metals. This review discusses various growth methods of single‐walled carbon nanotubes and their electrode applications in thin‐film photovoltaics.  相似文献   

9.
Charge transport and recombination are studied for organic solar cells fabricated using blends of polymer poly[(4,4′‐bis(2‐ethylhexyl)dithieno[3,2‐b:2′,3′‐d]silole)‐2,6‐diyl‐alt‐(4,7‐bis(2‐thienyl)‐2,1,3‐benzothiadiazole)‐5,5′‐diyl] (Si‐PCPDTBT) with [6,6]‐phenyl‐C61‐butyric acid methyl ester (mono‐PCBM) and the bis‐adduct analogue of mono‐PCBM (bis‐PCBM). The photocurrent of Si‐PCPDTBT:bis‐PCBM devices shows a strong square root dependence on the effective applied voltage. From the relationship between the photocurrent and the light intensity, we found that the square‐root dependence of the photocurrent is governed by the mobility‐lifetime (μτ) product of charge carriers while space‐charge field effects are insignificant. The fill factor (FF) and short circuit current density (Jsc) of bis‐PCBM solar cells show a considerable increase with temperature as compared to mono‐PCBM solar cells. SCLC analysis of single carrier devices proofs that the mobility of both electrons and holes is significantly lowered when replacing mono‐PCBM with bis‐PCBM. The increased recombination in Si‐PCPDTBT:bis‐PCBM solar cells is therefore attributed to the low carrier mobilities, as the transient photovoltage measurements show that the carrier lifetime of devices are not significantly altered by using bis‐PCBM instead of mono‐PCBM.  相似文献   

10.
Tappura  K.  Luomahaara  J.  Haatainen  T.  Hassel  J.  Vehmas  T. 《Plasmonics (Norwell, Mass.)》2016,11(2):627-635

A set of periodic plasmonic nanostructures is designed and fabricated as a means to investigate light absorption in single-crystal silicon thin-film structures with silicon-on-insulator (SOI) wafers as a model system. It is shown both computationally and experimentally that plasmon-induced absorption enhancement is remarkably higher for such devices than for thick or semi-infinite structures or for the thin-film amorphous silicon solar cells reported in the literature. Experimental photocurrent enhancements of the orders of 12 and 20 are demonstrated for non-optimized 2200-nm-thick photoconductive and 300-nm-thick photovoltaic test structures, respectively. Theoretical absorption enhancements as high as 80 are predicted to be achievable for the similar structures. The features of the spectral enhancements observed are attributed to several interacting resonance phenomena: not just to the favourable scattering of light by the periodic plasmonic nanoparticle arrays into the SOI device layer and coupling to the waveguide modes interacting with the plasmonic array but also to the Fabry-Pérot type interferences in the layered structure. We show that the latter effect gives a significant contribution to the spectral features of the enhancements, although frequently ignored in the discussions of previous reports.

  相似文献   

11.
Introducing periodic Ag gratings in the rear side of thin-film silicon excites localized surface plasmon (LSP) and Fabry-Perot (FP) effect. These two effects as well as an intrinsic one pass through absorption overlay together and all contribute to the light absorption in silicon. On the basis of electromagnetic field’s linear superposition, the absorptivity caused by LSP effect is separated from the overall absorptivity of a 500-nm-thick silicon and quantized by short current density. Finite difference time domain (FDTD) calculations were performed to obtain the absorptivity of silicon with different Ag grating parameters. The contribution of LSP effect to the light absorption is evaluated by photocurrent ratio and investigated under different Ag grating parameters. It is found that, as LSP effect is excited most intensively, the light absorption of silicon will also be enhanced extremely. By careful design, the overall short current density of silicon is optimized up to 25.4 mA/cm2, where the contribution of LSP effect accounts for 38.6 %. Comparing to 14.5 mA/cm2 for a reference silicon stack, it increases up to almost 75 %. These results may give design suggestions in implementation of plasmonic solar cell as high efficiency devices.  相似文献   

12.
Silicon solar cells among different types of solar energy harvesters have entered the commercial market owing to their high power conversion efficiency and stability. By replacing the electrode and the p‐type layer by a single layer of carbon nanotubes, the device can be further simplified. This greatly augments the attractiveness of silicon solar cells in the light of raw material shortages and the solar payback period, as well as lowering the fabrication costs. However, carbon nanotube‐based silicon solar cells still lack device efficiency and stability. These can be improved by chemical doping, antireflection coating, and encapsulation. In this work, the multifunctional effects of p‐doping, antireflection, and encapsulation are observed simultaneously, by applying a polymeric acid. This method increases the power conversion efficiency of single‐walled carbon nanotube‐based silicon solar cells from 9.5% to 14.4% and leads to unprecedented device stability of more than 120 d under severe conditions. In addition, the polymeric acid‐applied carbon nanotube‐based silicon solar cells show excellent chemical and mechanical robustness. The obtained stable efficiency stands the highest among the reported carbon nanotube‐based silicon solar cells.  相似文献   

13.
A novel type of solar cell has been developed based on charge separation at the heterojunction formed by a transparent conducting MXene electrode and an n‐type silicon (n‐Si) wafer. A thin layer of the native silicon dioxide plays an important role in suppressing the recombination of charge carriers. A two‐step chemical treatment can increase the device efficiency by about 40%. Promisingly, an average power conversion efficiency of over 10% under simulated full sunlight is achieved for this novel class of solar cell with the application of an antireflection layer. The efficiencies of these novel solar cells based on a MXene‐Si heterojunction achieved in this work point to great promise in emerging photovoltaic technology. In addition to their high efficiency, the excellent reproducibility of such devices establishes a solid base for possible future commercialization.  相似文献   

14.
The operation of halide perovskite optoelectronic devices, including solar cells and LEDs, is strongly influenced by the mobility of ions comprising the crystal structure. This peculiarity is particularly true when considering the long‐term stability of devices. A detailed understanding of the ion migration‐driven degradation pathways is critical to design effective stabilization strategies. Nonetheless, despite substantial research in this first decade of perovskite photovoltaics, the long‐term effects of ion migration remain elusive due to the complex chemistry of lead halide perovskites. By linking materials chemistry to device optoelectronics, this study highlights that electrical bias‐induced perovskite amorphization and phase segregation is a crucial degradation mechanism in planar mixed halide perovskite solar cells. Depending on the biasing potential and the injected charge, halide segregation occurs, forming crystalline iodide‐rich domains, which govern light emission and participate in light absorption and photocurrent generation. Additionally, the loss of crystallinity limits charge collection efficiency and eventually degrades the device performance.  相似文献   

15.
The role of drift and diffusion as driving forces for charge carrier extraction in flat heterojunction organic solar cells is examined at the example of devices showing intentional S‐shaped current–voltage (J‐V) characteristics. Since these kinks are related to energy barriers causing a redistribution of the electric field and charge carrier density gradients, they are suitable for studying the limits of charge extraction. The dynamics of this redistribution process are experimentally monitored via transient photocurrents, where the current response on square pulses of light is measured in the μs to ms regime. In combination with drift‐diffusion simulation data, we demonstrate a pile‐up of charge carriers at extraction barriers and a high contribution of diffusion to photocurrent in the case of injection barriers. Both types of barrier lead to S‐kinks in the J‐V curve and can be distinguished from each other and from other reasons for S‐kinks (e.g. imbalanced mobilities) by applying the presented approach. Furthermore, it is also helpful to investigate the driving forces for charge extraction in devices without S‐shaped J‐V curve close to open circuit to evaluate whether their electrodes are optimized.  相似文献   

16.
Minimizing carrier recombination at contact regions by using carrier‐selective contact materials, instead of heavily doping the silicon, has attracted considerable attention for high‐efficiency, low‐cost crystalline silicon (c‐Si) solar cells. A novel electron‐selective, passivating contact for c‐Si solar cells is presented. Tantalum nitride (TaN x ) thin films deposited by atomic layer deposition are demonstrated to provide excellent electron‐transporting and hole‐blocking properties to the silicon surface, due to their small conduction band offset and large valence band offset. Thin TaNx interlayers provide moderate passivation of the silicon surfaces while simultaneously allowing a low contact resistivity to n‐type silicon. A power conversion efficiency (PCE) of over 20% is demonstrated with c‐Si solar cells featuring a simple full‐area electron‐selective TaNx contact, which significantly improves the fill factor and the open circuit voltage (Voc) and hence provides the higher PCE. The work opens up the possibility of using metal nitrides, instead of metal oxides, as carrier‐selective contacts or electron transport layers for photovoltaic devices.  相似文献   

17.
Efficient dielectric scatterers based on a mixture of TiO2 nanoparticles and polydimethylsiloxane are demonstrated for light trapping in semitransparent organic solar cells. An improvement of 80% in the photocurrent of an optimized semitransparent solar cell is achieved with the dielectric scatterer with ≈100% diffuse reflectance for wavelengths larger than 400 nm. For a parallel tandem solar cell, the dielectric scatterer generates 20% more photocurrent compared with a silver mirror beneath the cell; for a series tandem solar cell, the dielectric scatterer can be used as a photocurrent balancer between the subcells with different photoabsorbing materials. The power conversion efficiency of the tandem cell in series configuration with balanced photocurrent in the subcells exceeds that of an optimized standard solar cell with a reflective electrode. The characteristics of polydimethylsiloxane, such as flexibility and the ability to stick conformably to surfaces, also remain in the dielectric scatterers, which makes the demonstrated light trapping configuration highly suitable for large scale module manufacturing of roll‐to‐roll printed organic single‐ or tandem‐junction solar cells.  相似文献   

18.
In order to assess the contributions of anti‐reflective and passivation effects in microstructured silicon‐based solar light harvesting devices, thin layers of aluminum oxide (Al2O3), silicon dioxide (SiO2), silicon‐rich silicon nitride (SiNx), and indium tin oxide (ITO), with a thickness ranging from 45 to 155 nm, are deposited onto regularly packed arrays of silicon micropillars with radial p/n junctions. Atomic layer deposition of Al2O3 yields the best conformal coating over the micropillars. The fact that layers made by low‐pressure chemical vapor deposition (SiO2 and SiNx) are not conformally deposited on the sidewalls of the Si micropillars do not influence the photoelectrical efficiency. For ITO, a change in composition along the micropillar height is measured, which leads to poor performance. For Al2O3, deconvolution of the contributions of passivation and anti‐reflection to the overall efficiency gain exhibits the importance of passivation in micro/nano‐structured Si devices. Al2O3‐coated samples perform the best, for both n/p and p/n configured pillars, yielding (relative) increases of 116% and 37% in efficiency of coated versus non‐coated samples for p‐type and n‐type base micropillar arrays, respectively.  相似文献   

19.
Crystalline silicon thin film solar cells with hybrid arranged bottom grating are proposed. Optical absorption efficiency and photocurrent density are calculated to get optimized bottom grating parameters. Compared with mono arranged Ag grating or Al-doped zinc-oxide grating, hybrid arranged bottom grating could couple more near-infrared region lights into the active absorber layer. Optical absorption enhancement profiles are plotted for monolayer grating solar cells with four different bottom grating arrangements, which agree with dispersion characteristics well. The absorption enhancement profiles illustrate the mechanism of the more coupling of near-infrared lights. Electrical modeling is considered in the end and it is found that hybrid arranged bottom grating’s thin film solar cell outperforms the thin film solar cells with mono arranged bottom gratings evidently.  相似文献   

20.
One of major approaches to cheaper solar cells is reducing the amount of semiconductor material used for their fabrication and making cells thinner. To compensate for lower light absorption such physically thin devices have to incorporate light-trapping which increases their optical thickness. Light scattering by textured surfaces is a common technique but it cannot be universally applied to all solar cell technologies. Some cells, for example those made of evaporated silicon, are planar as produced and they require an alternative light-trapping means suitable for planar devices. Metal nanoparticles formed on planar silicon cell surface and capable of light scattering due to surface plasmon resonance is an effective approach.The paper presents a fabrication procedure of evaporated polycrystalline silicon solar cells with plasmonic light-trapping and demonstrates how the cell quantum efficiency improves due to presence of metal nanoparticles.To fabricate the cells a film consisting of alternative boron and phosphorous doped silicon layers is deposited on glass substrate by electron beam evaporation. An Initially amorphous film is crystallised and electronic defects are mitigated by annealing and hydrogen passivation. Metal grid contacts are applied to the layers of opposite polarity to extract electricity generated by the cell. Typically, such a ~2 μm thick cell has a short-circuit current density (Jsc) of 14-16 mA/cm2, which can be increased up to 17-18 mA/cm2 (~25% higher) after application of a simple diffuse back reflector made of a white paint.To implement plasmonic light-trapping a silver nanoparticle array is formed on the metallised cell silicon surface. A precursor silver film is deposited on the cell by thermal evaporation and annealed at 23°C to form silver nanoparticles. Nanoparticle size and coverage, which affect plasmonic light-scattering, can be tuned for enhanced cell performance by varying the precursor film thickness and its annealing conditions. An optimised nanoparticle array alone results in cell Jsc enhancement of about 28%, similar to the effect of the diffuse reflector. The photocurrent can be further increased by coating the nanoparticles by a low refractive index dielectric, like MgF2, and applying the diffused reflector. The complete plasmonic cell structure comprises the polycrystalline silicon film, a silver nanoparticle array, a layer of MgF2, and a diffuse reflector. The Jsc for such cell is 21-23 mA/cm2, up to 45% higher than Jsc of the original cell without light-trapping or ~25% higher than Jsc for the cell with the diffuse reflector only.

Introduction

Light-trapping in silicon solar cells is commonly achieved via light scattering at textured interfaces. Scattered light travels through a cell at oblique angles for a longer distance and when such angles exceed the critical angle at the cell interfaces the light is permanently trapped in the cell by total internal reflection (Animation 1: Light-trapping). Although this scheme works well for most solar cells, there are developing technologies where ultra-thin Si layers are produced planar (e.g. layer-transfer technologies and epitaxial c-Si layers) 1 and or when such layers are not compatible with textures substrates (e.g. evaporated silicon) 2. For such originally planar Si layer alternative light trapping approaches, such as diffuse white paint reflector 3, silicon plasma texturing 4 or high refractive index nanoparticle reflector 5 have been suggested.Metal nanoparticles can effectively scatter incident light into a higher refractive index material, like silicon, due to the surface plasmon resonance effect 6. They also can be easily formed on the planar silicon cell surface thus offering a light-trapping approach alternative to texturing. For a nanoparticle located at the air-silicon interface the scattered light fraction coupled into silicon exceeds 95% and a large faction of that light is scattered at angles above critical providing nearly ideal light-trapping condition (Animation 2: Plasmons on NP). The resonance can be tuned to the wavelength region, which is most important for a particular cell material and design, by varying the nanoparticle average size, surface coverage and local dielectric environment 6,7. Theoretical design principles of plasmonic nanoparticle solar cells have been suggested 8. In practice, Ag nanoparticle array is an ideal light-trapping partner for poly-Si thin-film solar cells because most of these design principle are naturally met. The simplest way of forming nanoparticles by thermal annealing of a thin precursor Ag film results in a random array with a relatively wide size and shape distribution, which is particularly suitable for light-trapping because such an array has a wide resonance peak, covering the wavelength range of 700-900 nm, important for poly-Si solar cell performance. The nanoparticle array can only be located on the rear poly-Si cell surface thus avoiding destructive interference between incident and scattered light which occurs for front-located nanoparticles 9. Moreover, poly-Si thin-film cells do not requires a passivating layer and the flat base-shaped nanoparticles (that naturally result from thermal annealing of a metal film) can be directly placed on silicon further increases plasmonic scattering efficiency due to surface plasmon-polariton resonance 10.The cell with the plasmonic nanoparticle array as described above can have a photocurrent about 28% higher than the original cell. However, the array still transmits a significant amount of light which escapes through the rear of the cell and does not contribute into the current. This loss can be mitigated by adding a rear reflector to allow catching transmitted light and re-directing it back to the cell. Providing sufficient distance between the reflector and the nanoparticles (a few hundred nanometers) the reflected light will then experience one more plasmonic scattering event while passing through the nanoparticle array on re-entering the cell and the reflector itself can be made diffuse - both effects further facilitating light scattering and hence light-trapping. Importantly, the Ag nanoparticles have to be encapsulated with an inert and low refractive index dielectric, like MgF2 or SiO2, from the rear reflector to avoid mechanical and chemical damage 7. Low refractive index for this cladding layer is required to maintain a high coupling fraction into silicon and larger scattering angles, which are ensured by the high optical contrast between the media on both sides of the nanoparticle, silicon and dielectric 6. The photocurrent of the plasmonic cell with the diffuse rear reflector can be up to 45% higher than the current of the original cell or up to 25% higher than the current of an equivalent cell with the diffuse reflector only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号