首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
2.
The Arabidopsis MEKK1‐MKK1/MKK2‐MPK4 kinase cascade is monitored by the nucleotide‐binding leucine‐rich‐repeat immune receptor SUMM2. Disruption of this kinase cascade leads to activation of SUMM2‐mediated immune responses. MEKK2, a close paralog of MEKK1, is required for defense responses mediated by SUMM2, the molecular mechanism of which is unclear. In this study, we showed that MEKK2 serves as a negative regulator of MPK4. It binds to MPK4 to directly inhibit its phosphorylation by upstream MKKs. Activation of SUMM2‐mediated defense responses induces the expression of MEKK2, which in turn blocks MPK4 phosphorylation to further amplify immune responses mediated by SUMM2. Intriguingly, MEKK2 locates in a tandem repeat consisting of MEKK1, MEKK2 and MEKK3, which was generated from a recent gene duplication event, suggesting that MEKK2 evolved from a MAPKKK to become a negative regulator of MAP kinases.  相似文献   

3.
Plants possess an innate immune system capable of restricting invasion by most potential pathogens. At the cell surface, the recognition of microbe‐associated molecular patterns (MAMPs) and/or damage‐associated molecular patterns (DAMPs) by pattern recognition receptors (PRRs) represents the first event for the prompt mounting of an effective immune response. Pathogens have evolved effectors that block MAMP‐triggered immunity. The Pseudomonas syringae effector AvrPto abolishes immunity triggered by the peptide MAMPs flg22 and elf18, derived from the bacterial flagellin and elongation factor Tu, respectively, by inhibiting the kinase function of the corresponding receptors FLS2 and EFR, as well as their co‐receptors BAK1 and BKK1. Oligogalacturonides (OGs), a well‐known class of DAMPs, are oligomers of α‐1,4‐linked galacturonosyl residues, released on partial degradation of the plant cell wall homogalacturonan. We show here that AvrPto affects only a subset of the OG‐triggered immune responses and that, among these responses, only a subset is affected by the concomitant loss of BAK1 and BKK1. However, the antagonistic effect on auxin‐related responses is not affected by either AvrPto or the loss of BAK1/BKK1. These observations reveal an unprecedented complexity among the MAMP/DAMP response cascades. We also show that the signalling system mediated by Peps, another class of DAMPs, and their receptors PEPRs, contributes to OG‐activated immunity. We hypothesize that OGs are sensed through multiple and partially redundant perception/transduction complexes, some targeted by AvrPto, but not necessarily comprising BAK1 and BKK1.  相似文献   

4.
The successful recognition of pathogen-associated molecular patterns (PAMPs) as a danger signal is crucial for plants to fend off numerous potential pathogenic microbes. The signal is relayed through mitogen-activated protein kinase (MPK) cascades to activate defenses. Here, we show that the Pseudomonas syringae type III effector HopF2 can interact with Arabidopsis thaliana MAP KINASE KINASE5 (MKK5) and likely other MKKs to inhibit MPKs and PAMP-triggered immunity. Inhibition of PAMP-induced MPK phosphorylation was observed when HopF2 was delivered naturally by the bacterial type III secretion system. In addition, HopF2 Arg-71 and Asp-175 residues that are required for the interaction with MKK5 are also necessary for blocking MAP kinase activation, PAMP-triggered defenses, and virulence function in plants. HopF2 can inactivate MKK5 and ADP-ribosylate the C terminus of MKK5 in vitro. Arg-313 of MKK5 is required for ADP-ribosylation by HopF2 and MKK5 function in the plant cell. Together, these results indicate that MKKs are important targets of HopF2.  相似文献   

5.
6.
Mitogen-activated protein kinase (MAPK) cascades play pivotal roles in plant defense against phytopathogens downstream of immune receptor complexes. The amplitude and duration of MAPK activation must be strictly controlled, but the underlying mechanism remains unclear. Here, we identified Arabidopsis CPL1 (C-terminal domain phosphatase-like 1) as a negative regulator of microbe-associated molecular pattern (MAMP)-triggered immunity via a forward-genetic screen. Disruption of CPL1 significantly enhanced plant resistance to Pseudomonas pathogens induced by the bacterial peptide flg22. Furthermore, flg22-induced MPK3/MPK4/MPK6 phosphorylation was dramatically elevated in cpl1 mutants but severely impaired in CPL1 overexpression lines, suggesting that CPL1 might interfere with flg22-induced MAPK activation. Indeed, CPL1 directly interacted with MPK3 and MPK6, as well as the upstream MKK4 and MKK5. A firefly luciferase-based complementation assay indicated that the interaction between MKK4/MKK5 and MPK3/MPK6 was significantly reduced in the presence of CPL1. These results suggest that CPL1 plays a novel regulatory role in suppressing MAMP-induced MAPK cascade activation and MAMP-triggered immunity to bacterial pathogens.  相似文献   

7.
Successful pathogens have evolved strategies to interfere with host immune systems. For example, the ubiquitous plant pathogen Pseudomonas syringae injects two sequence-distinct effectors, AvrPto and AvrPtoB, to intercept convergent innate immune responses stimulated by multiple microbe-associated molecular patterns (MAMPs). However, the direct host targets and precise molecular mechanisms of bacterial effectors remain largely obscure. We show that AvrPto and AvrPtoB bind the Arabidopsis receptor-like kinase BAK1, a shared signaling partner of both the flagellin receptor FLS2 and the brassinosteroid receptor BRI1. This targeting interferes with ligand-dependent association of FLS2 with BAK1 during infection. It also impedes BAK1-dependent host immune responses to diverse other MAMPs and brassinosteroid signaling. Significantly, the structural basis of AvrPto-BAK1 interaction appears to be distinct from AvrPto-Pto association required for effector-triggered immunity. These findings uncover a unique strategy of bacterial pathogenesis where virulence effectors block signal transmission through a key common component of multiple MAMP-receptor complexes.  相似文献   

8.
Cytoplasmic recognition of pathogen virulence effectors by plant NB‐LRR proteins leads to strong induction of defence responses termed effector triggered immunity (ETI). In tomato, a protein complex containing the NB‐LRR protein Prf and the protein kinase Pto confers recognition of the Pseudomonas syringae effectors AvrPto and AvrPtoB. Although structurally unrelated, AvrPto and AvrPtoB interact with similar residues in the Pto catalytic cleft to activate ETI via an unknown mechanism. Here we show that the Prf complex is oligomeric, containing at least two molecules of Prf. Within the complex, Prf can associate with Pto or one of several Pto family members including Fen, Pth2, Pth3, or Pth5. The dimerization surface for Prf is the novel N‐terminal domain, which also coordinates an intramolecular interaction with the remainder of the molecule, and binds Pto kinase or a family member. Thus, association of two Prf N‐terminal domains brings the associated kinases into close promixity. Tomato lines containing Prf complexed with Pth proteins but not Pto possessed greater immunity against P. syringae than tomatoes lacking Prf. This demonstrates that incorporation of non‐Pto kinases into the Prf complex extends the number of effector proteins that can be recognized.  相似文献   

9.
Pathogens infect a host by suppressing defense responses induced upon recognition of microbe‐associated molecular patterns (MAMPs). Despite this suppression, MAMP receptors mediate basal resistance to limit host susceptibility, via a process that is poorly understood. The Arabidopsis leucine‐rich repeat (LRR) receptor kinase BAK1 associates and functions with different cell surface LRR receptors for a wide range of ligands, including MAMPs. We report that BAK1 depletion is linked to defense activation through the endogenous PROPEP peptides (Pep epitopes) and their LRR receptor kinases PEPR1/PEPR2, despite critical defects in MAMP signaling. In bak1‐knockout plants, PEPR elicitation results in extensive cell death and the prioritization of salicylate‐based defenses over jasmonate‐based defenses, in addition to elevated proligand and receptor accumulation. BAK1 disruption stimulates the release of PROPEP3, produced in response to Pep application and during pathogen challenge, and renders PEPRs necessary for basal resistance. These findings are biologically relevant, since specific BAK1 depletion coincides with PEPR‐dependent resistance to the fungal pathogen Colletotrichum higginsianum. Thus, the PEPR pathway ensures basal resistance when MAMP‐triggered defenses are compromised by BAK1 depletion.  相似文献   

10.
11.
Abscisic acid (ABA) is a major phytohormone involved in important stress‐related and developmental plant processes. Recent phosphoproteomic analyses revealed a large set of ABA‐triggered phosphoproteins as putative mitogen‐activated protein kinase (MAPK) targets, although the evidence for MAPKs involved in ABA signalling is still scarce. Here, we identified and reconstituted in vivo a complete ABA‐activated MAPK cascade, composed of the MAP3Ks MAP3K17/18, the MAP2K MKK3 and the four C group MAPKs MPK1/2/7/14. In planta, we show that ABA activation of MPK7 is blocked in mkk3‐1 and map3k17mapk3k18 plants. Coherently, both mutants exhibit hypersensitivity to ABA and altered expression of a set of ABA‐dependent genes. A genetic analysis further reveals that this MAPK cascade is activated by the PYR/PYL/RCAR‐SnRK2‐PP2C ABA core signalling module through protein synthesis of the MAP3Ks, unveiling an atypical mechanism for MAPK activation in eukaryotes. Our work provides evidence for a role of an ABA‐induced MAPK pathway in plant stress signalling.  相似文献   

12.
Mitogen‐activated protein kinase (MAPK) signaling plays important roles in diverse biological processes. In Arabidopsis, MPK3/MPK6, MKK4/MKK5, and the MAPKKK YODA (YDA) form a MAPK pathway that negatively regulates stomatal development. Brassinosteroid (BR) stimulates this pathway to inhibit stomata production. In addition, MPK3/MPK6 and MKK4/MKK5 also serve as critical signaling components in plant immunity. Here, we report that MAPKKK3/MAPKKK5 form a kinase cascade with MKK4/MKK5 and MPK3/MPK6 to transduce defense signals downstream of multiple plant receptor kinases. Loss of MAPKKK3/MAPKKK5 leads to reduced activation of MPK3/MPK6 in response to different pathogen‐associated molecular patterns (PAMPs) and increased susceptibility to pathogens. Surprisingly, developmental defects caused by silencing of YDA are suppressed in the mapkkk3 mapkkk5 double mutant. On the other hand, loss of YDA or blocking BR signaling leads to increased PAMP‐induced activation of MPK3/MPK6. These results reveal antagonistic interactions between a developmental MAPK pathway and an immune signaling MAPK pathway.  相似文献   

13.
MAP kinase signaling is an integral part of plant immunity. Disruption of the MEKK1‐MKK1/2‐MPK4 kinase cascade results in constitutive immune responses mediated by the NLR protein SUMM2, but the molecular mechanism is so far poorly characterized. Here, we report that SUMM2 monitors a substrate protein of MPK4, CALMODULIN‐BINDING RECEPTOR‐LIKE CYTOPLASMIC KINASE 3 (CRCK3). Similar to SUMM2, CRCK3 was isolated from a suppressor screen of mkk1 mkk2 and is required for the autoimmunity phenotypes in mekk1, mkk1 mkk2, and mpk4 mutants. In wild‐type plants, CRCK3 is mostly phosphorylated. MPK4 interacts with CRCK3 and can phosphorylate CRCK3 in vitro. In mpk4 mutant plants, phosphorylation of CRCK3 is substantially reduced, suggesting that MPK4 phosphorylates CRCK3 in vivo. Further, CRCK3 associates with SUMM2 in planta, suggesting SUMM2 senses the disruption of the MEKK1‐MKK1/2‐MPK4 kinase cascade through CRCK3. Our study suggests that a MAP kinase substrate is used as a guardee or decoy for monitoring the integrity of MAP kinase signaling.  相似文献   

14.
Insight into how plants simultaneously cope with multiple stresses, for example, when challenged with biotic stress from pathogen infection and abiotic stress from drought, is important both for understanding evolutionary trade‐offs and optimizing crop responses to these stresses. Mechanisms by which initial plant immune signaling antagonizes abscisic acid (ABA) signal transduction require further investigation. Using a chemical genetics approach, the small molecule [5‐(3,4‐dichlorophenyl)furan‐2‐yl]‐piperidine‐1‐ylmethanethione (DFPM) has previously been identified due to its ability to suppress ABA signaling via plant immune signaling components. Here, we have used forward chemical genetics screening to identify DFPM‐insensitive loci by monitoring the activity of ABA‐inducible pRAB18::GFP in the presence of DFPM and ABA. The ability of DFPM to attenuate ABA signaling was reduced in rda mutants (resistant to DFPM inhibition of ABA signaling). One of the mutants, rda2, was mapped and is defective in a gene encoding a lectin receptor kinase. RDA2 functions in DFPM‐mediated inhibition of ABA‐mediated reporter expression. RDA2 is required for DFPM‐mediated activation of immune signaling, including phosphorylation of mitogen‐activated protein kinase (MAPK) 3 (MPK3) and MPK6, and induction of immunity marker genes. Our study identifies a previously uncharacterized receptor kinase gene that is important for DFPM‐mediated immune signaling and inhibition of ABA signaling. We demonstrate that the lectin receptor kinase RDA2 is essential for perceiving the DFPM signal and activating MAPKs, and that MKK4 and MKK5 are required for DFPM interference with ABA signal transduction.  相似文献   

15.
Innate immunity signaling pathways in both animals and plants are regulated by mitogen-activated protein kinase (MAPK) cascades. An Arabidopsis MAPK cascade (MEKK1, MKK4/MKK5, and MPK3/MPK6) has been proposed to function downstream of the flagellin receptor FLS2 based on biochemical assays using transient overexpression of candidate components. To genetically test this model, we characterized two mekk1 mutants. We show here that MEKK1 is not required for flagellin-triggered activation of MPK3 and MPK6. Instead, MEKK1 is essential for activation of MPK4, a MAPK that negatively regulates systemic acquired resistance. We also showed that MEKK1 negatively regulates temperature-sensitive and tissue-specific cell death and H(2)O(2) accumulation that are partly dependent on both RAR1, a key component in resistance protein function, and SID2, an isochorismate synthase required for salicylic acid production upon pathogen infection.  相似文献   

16.
Mitogen‐activated protein kinase (MPK) cascades are conserved mechanisms of signal transduction across eukaryotes. Despite the importance of MPK proteins in signaling events, specific roles for many Arabidopsis MPK proteins remain unknown. Multiple studies have suggested roles for MPK signaling in a variety of auxin‐related processes. To identify MPK proteins with roles in auxin response, we screened mpk insertional alleles and identified mpk1‐1 as a mutant that displays hypersensitivity in auxin‐responsive cell expansion assays. Further, mutants defective in the upstream MAP kinase kinase MKK3 also display hypersensitivity in auxin‐responsive cell expansion assays, suggesting that this MPK cascade affects auxin‐influenced cell expansion. We found that MPK1 interacts with and phosphorylates ROP BINDING PROTEIN KINASE 1 (RBK1), a protein kinase that interacts with members of the Rho‐like GTPases from Plants (ROP) small GTPase family. Similar to mpk1‐1 and mkk3‐1 mutants, rbk1 insertional mutants display auxin hypersensitivity, consistent with a possible role for RBK1 downstream of MPK1 in influencing auxin‐responsive cell expansion. We found that RBK1 directly phosphorylates ROP4 and ROP6, supporting the possibility that RBK1 effects on auxin‐responsive cell expansion are mediated through phosphorylation‐dependent modulation of ROP activity. Our data suggest a MKK3 ? MPK1 ? RBK1 phosphorylation cascade that may provide a dynamic module for altering cell expansion.  相似文献   

17.
Gao M  Liu J  Bi D  Zhang Z  Cheng F  Chen S  Zhang Y 《Cell research》2008,18(12):1190-1198
Mitogen-activated protein kinase (MAPK) cascades play important roles in regulating plant innate immune responses. In a genetic screen to search for mutants with constitutive defense responses, we identified multiple alleles of mpk4 and mekk1 that exhibit cell death and constitutive defense responses. Bimolecular fluorescence complementation (BiFC) analysis showed that both MPK4 and MEKK1 interact with MKK1 and MKK2, two closely related MAPK kinases. mkk1 and mkk2 single mutant plants do not have obvious mutant phenotypes. To test whether MKK1 and MKK2 function redundantly, mkk1 mkk2 double mutants were generated. The mkk1 mkk2 double mutant plants die at seedling stage and the seedling-lethality phenotype is temperature-dependent. Similar to the mpk4 and mekk1 mutants, the mkk1 mkk2 double mutant seedlings accumulate high levels of H2O2, display spontaneous cell death, constitutively express Pathogenesis Related (PR) genes and exhibit pathogen resistance. In addition, activation of MPK4 by flg22 is impaired in the mkk1 mkk2 double mutants, suggesting that MKK1 and MKK2 function together with MPK4 and MEKK1 in a MAP kinase cascade to negatively regulate innate immune responses in plants.  相似文献   

18.
Zhang Z  Wu Y  Gao M  Zhang J  Kong Q  Liu Y  Ba H  Zhou J  Zhang Y 《Cell host & microbe》2012,11(3):253-263
Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) serves as a primary plant defense response against microbial pathogens, with MEKK1, MKK1/MKK2, and MPK4 functioning as a MAP kinase cascade downstream of PAMP receptors. Plant Resistance (R) proteins sense specific pathogen effectors to initiate a second defense mechanism, termed effector-triggered immunity (ETI). In a screen for suppressors of the mkk1 mkk2 autoimmune phenotype, we identify the nucleotide-binding leucine-rich repeat (NB-LRR) protein SUMM2 and find that the MEKK1-MKK1/MKK2-MPK4 cascade negatively regulates SUMM2-mediated immunity. Further, the MEKK1-MKK1/MKK2-MPK4 cascade positively regulates basal defense targeted by the Pseudomonas syringae pathogenic effector HopAI1, which inhibits MPK4 kinase activity. Inactivation of MPK4 by HopAI1 results in activation of SUMM2-mediated defense responses. Our data suggest that SUMM2 is an R protein that becomes active when the MEKK1-MKK1/MKK2-MPK4 cascade is disrupted by pathogens, supporting the hypothesis that R proteins evolved to protect plants when microbial effectors suppress basal resistance.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号