首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The genus Xiphinema constitutes a large group of about 260 species of plant‐ectoparasitic nematodes. The group is polyphagous and distributed almost worldwide. Some of the species of this genus damage agricultural crops by direct feeding on root cells as well as by transmitting nepoviruses. Species discrimination in Xiphinema is complicated by phenotypic plasticity leading to potential misidentification. We conducted nematode surveys in cultivated and natural environments in Spain from 2009 to 2012, from which we identified 20 populations of Xiphinema species morphologically close to the virus‐vector nematode species Xiphinema diversicaudatum, three apomictic populations tentatively identified as species from the complex Xiphinema aceri‐pyrenaicum group, and one population morphologically different from all others that is characterized by a female tail elongate to conical and absence of uterine differentiation. We developed comparative multivariate analyses for these related species by using morphological and morphometrical features together with molecular data from nuclear ribosomal DNA genes [D2‐D3 expansion segments of large ribosomal subunit 28S, internal transcribed spacer 1 (ITS1), and partial small ribosomal subunit (18S)]. The results of multivariate, molecular, and phylogenetic analysis confirmed the morphological hypotheses and allowed the delimitation and discrimination of two new species in the genus described herein as Xiphinema baetica sp. nov. and Xiphinema turdetanensis sp. nov. , and ten known species: Xiphinema adenohystherum, Xiphinema belmontense, Xiphinema cohni, Xiphinema coxi europaeum, Xiphinema gersoni, Xiphinema hispidum, Xiphinema italiae, Xiphinema lupini, Xiphinema nuragicum, and Xiphinema turcicum. Multivariate analyses based on quantitative and qualitative characters and phylogenetic relationships of Xiphinema spp. based on the three molecular ribosomal markers resulted in a partial consensus of these species grouping as nematode populations were maintained for the majority of morphospecies groups (e.g. morphospecies groups 5 and 6), but not in some others (e.g. position of Xiphinema granatum), demonstrating the usefulness of these analyses for helping in the diagnosis and identification of Xiphinema spp. The clade topology of phylogenetic trees of D2‐D3 and partial 18S regions in this study were congruent in supporting the polyphyletic status of some characters, such as the female tail shape and the degree of development of the genital system in species with both genital branches equally developed. This is the most complete phylogenetic study for Xiphinema non‐americanum‐group species. Agreement between phylogenetic trees and some morphological characters (uterine spines, pseudo‐Z organ, and tail shape) was tested by reconstruction of their histories on rDNA‐based trees using parsimony and Bayesian approaches. Thus, integrative taxonomy, based on the combination of multivariate, molecular analyses with morphology, constitutes a new insight into the identification of Xiphinema species. © 2013 The Linnean Society of London  相似文献   

4.
We studied the morphology and molecular phylogeny of Myoschiston duplicatum, a peritrich ciliate that has been recorded as an epibiont of crustaceans, but which we also identified on marine algae from Korea. The important morphological characteristics revealed by silver staining of Myoschiston species have not been described because they are rarely collected. Using morphological methods, we redescribed the type species of the genus, Myoschiston duplicatum, and provided an improved diagnosis of Myoschiston. In addition, the coding regions for nuclear small subunit (SSU) rRNA and internal transcribed spacer 1‐5.8S‐internal transcribed spacer 2 sequences were sequenced. Phylogenetic analyses that included available SSU rDNA sequences of peritrichs from GenBank strongly supported a position of M. duplicatum within the family Zoothamniidae. In addition, phylogenetic analyses were performed with single datasets (ITS1‐5.8S‐ITS2) and combined datasets (SSU rDNA + ITS1‐5.8S‐ITS2) to explore further the phylogenetic relationship in the family Zoothamniidae between the three morphologically similar genera—Zoothamnium, Myoschiston, and Zoothamnopsis.  相似文献   

5.
The genus Peridinium Ehrenb. comprises a group of highly diversified dinoflagellates. Their morphological taxonomy has been established over the last century. Here, we examined relationships within the genus Peridinium, including Peridinium bipes F. Stein sensu lato, based on a molecular phylogeny derived from nuclear rDNA sequences. Extensive rDNA analyses of nine selected Peridinium species showed that intraspecies genetic variation was considerably low, but interspecies genetic divergence was high (>1.5% dissimilarity in the nearly complete 18S sequence; >4.4% in the 28S rDNA D1/D2). The 18S and 28S rDNA Bayesian tree topologies showed that Peridinium species grouped according to their taxonomic positions and certain morphological characters (e.g., epithecal plate formula). Of these groups, the quinquecorne group (plate formula of 3′, 2a, 7″) diverged first, followed by the umbonatum group (4′, 2a, 7″) and polonicum group (4′, 1a, 7″). Peridinium species with a plate formula of 4′, 3a, 7″ diverged last. Thus, 18S and 28S rDNA D1/D2 sequences are informative about relationships among Peridinium species. Statistical analyses revealed that the 28S rDNA D1/D2 region had a significantly higher genetic divergence than the 18S rDNA region, suggesting that the former as DNA markers may be more suitable for sequence‐based delimitation of Peridinium. The rDNA sequences had sufficient discriminative power to separate P. bipes f. occultaum (Er. Lindem.) M. Lefèvre and P. bipes f. globosum Er. Lindem. into two distinct species, even though these taxa are morphologically only marginally discriminated by spines on antapical plates and the shape of red bodies during the generation of cysts. Our results suggest that 28S rDNA can be used for all Peridinium species to make species‐level taxonomic distinctions, allowing improved taxonomic classification of Peridinium.  相似文献   

6.
The root lesion nematodes of the genus Pratylenchus Filipjev, 1936 are migratory endoparasites of plant roots, considered among the most widespread and important nematode parasites in a variety of crops. We obtained gene sequences from the D2 and D3 expansion segments of 28S rRNA partial and 18S rRNA from 31 populations belonging to 11 valid and two unidentified species of root lesion nematodes and five outgroup taxa. These datasets were analyzed using maximum parsimony and Bayesian inference. The alignments were generated using the secondary structure models for these molecules and analyzed with Bayesian inference under the standard models and the complex model, considering helices under the doublet model and loops and bulges under the general time reversible model. The phylogenetic informativeness of morphological characters is tested by reconstruction of their histories on rRNA based trees using parallel parsimony and Bayesian approaches. Phylogenetic and sequence analyses of the 28S D2–D3 dataset with 145 accessions for 28 species and 18S dataset with 68 accessions for 15 species confirmed among large numbers of geographical diverse isolates that most classical morphospecies are monophyletic. Phylogenetic analyses revealed at least six distinct major clades of examined Pratylenchus species and these clades are generally congruent with those defined by characters derived from lip patterns, numbers of lip annules, and spermatheca shape. Morphological results suggest the need for sophisticated character discovery and analysis for morphology based phylogenetics in nematodes.  相似文献   

7.
8.
9.
According to base pairing, the rRNA folds into corresponding secondary structures, which contain additional phylogenetic information. On the basis of sequencing for complete rDNA sequences (18S, ITS1, 5.8S, ITS2 and 28S rDNA) of Demodex, we predicted the secondary structure of the complete rDNA sequence (18S, 5.8S, and 28S rDNA) of Demodex folliculorum, which was in concordance with that of the main arthropod lineages in past studies. And together with the sequence data from GenBank, we also predicted the secondary structures of divergent domains in SSU rRNA of 51 species and in LSU rRNA of 43 species from four superfamilies in Acari (Cheyletoidea, Tetranychoidea, Analgoidea and Ixodoidea). The multiple alignment among the four superfamilies in Acari showed that, insertions from Tetranychoidea SSU rRNA formed two newly proposed helixes, and helix c3-2b of LSU rRNA was absent in Demodex (Cheyletoidea) taxa. Generally speaking, LSU rRNA presented more remarkable differences than SSU rRNA did, mainly in D2, D3, D5, D7a, D7b, D8 and D10.  相似文献   

10.
The phylogenetic position of Cephalenchus is enigmatic with respect to other tylench nematodes. In this study, Cephalenchus populations representing 11 nominal species were sampled worldwide for molecular and morphological characterization. Species identification was based on light microscopy (LM) and scanning electron microscopy (SEM). Molecular analyses were based on the genes (i.e. 18S, 28S, 5.8S) and internal transcribed spacers (ITS‐1 and ITS‐2) of the ribosomal RNA (rRNA). Phylogenetic analyses (i.e. full and reduced alignments) of either concatenated or single genes always supported the monophyly of Cephalenchus. A sister relationship between Cephalenchus and Eutylenchus excretorius was recovered by most analyses, although branch support varies depending on the dataset used. The position of Cephalenchus + E. excretorius within Tylenchomorpha nevertheless remains ambiguous, thus highlighting the importance of sampling additional genes as well as taxa. Placement of Cephalenchus + E. excretorius as sister of Tylenchinae or Boleodorinae could not be rejected on the basis of 18S and 28S rRNA genes. Within Cephalenchus, amphidial opening morphology shows congruence with molecular‐based phylogenetic relationships, whereas the number of lines in the lateral field is likely to be a convergent trait. Morphometric analyses clearly distinguished short tail from medium–long tail species, and SEM observations seem to suggest a relation between tail length and amphidial opening. In addition, molecular phylogenies support the non‐monophyly of Cephalenchus cephalodiscus, Cephalenchus cylindricus, Cephalenchus daisuce and Cephalenchus leptus. The known extent of Cephalenchus diversity is increased with the inclusion of two new species, and the biogeography of the genus is discussed.  相似文献   

11.
In this study, the variability within the ribosomal DNA region spanning the internal transcribed spacers ITS1 and ITS2 and the 5.8S gene (5.8S-ITS rDNA) was used to differentiate species in the genus Pichia. The 5.8S-ITS rDNA region was PCR-amplified and the PCR product digested with the enzymes CfoI, HinfI, and HaeIII. The variability in the size of the amplified product and in the restriction patterns enabled differentiation between species in the genus Pichia, and between Pichia species and yeast species from other genera in the Yeast-id database (). Moreover, the restriction fragment length polymorphism (RFLP) patterns of the 5.8S-ITS enabled misidentified strains to be detected and revealed genetic heterogeneity between strains within the Pichia membranifaciens and Pichia nakazawae species. Ultimately, the RFLP patterns of the 5.8S-ITS rDNA failed to differentiate between some Pichia and Candida species that could be distinguished on the basis of the sequence of the 5.8S-ITS rRNA region or the sequence of the D1/D2 domain of the 26S rDNA gene.  相似文献   

12.
Abstract The brown planthopper (BPH), Nilaparvata lugens Stål, which is one of the most destructive pests of rice, has been confirmed to harbor yeast‐like symbiotes (YLS) in the fat body. Several morphologically different YLS have been previously isolated and cultured in vitro from BPH, but direct evidence is lacking to further clarify whether the cultured YLS were from BPH. In this study, one species of YLS was successfully cultured in vitro and simultaneously verified to exist in the fat body of BPH by sequence analysis and nested polymerase chain reaction (PCR). The cultured YLS isolate in vitro was identified as a member of the genus Candida on the basis of 18S rDNA (ribosomal DNA) and 5.8S‐ITS (internal transcribed spacer) rDNA sequence and a phylogenetic analysis of ITS sequences from yeast. Therefore, this yeast isolate was named as Candida‐like symbiotes. Candida‐like symbiotes was found to exist in fat bodies, ovaries and newly laid eggs of the BPH, but not in the heads, thoraxes and mid‐guts. In addition, the number of Candida‐like symbiotes in 1 × 106 of purified YLS from BPH fat bodies was speculated to be (5.32 ± 0.22) × 104 on the basis of a quantitative PCR analysis.  相似文献   

13.
A new photosynthetic planktonic marine dinoflagellate, Azadinium dexteroporum sp. nov., is described from the Gulf of Naples (South Tyrrhenian Sea, Mediterranean Sea). The plate formula of the species, Po, cp, X, 4′, 3a, 6″, 6C, 5?S, 6? and 2″″, is typical for this recently described genus. Azadinium dexteroporum is the smallest rep‐resentative of the genus (8.5 μm average length, 6.2 μm average width) and shares the presence of a small antapical spine with the type species A. spinosum and with A. polongum. However, it differs from all other Azadinium species for the markedly asymmetrical Po plate and the position of the ventral pore, which is located at the right posterior end of the Po plate. Another peculiarity of A. dexteroporum is the pronounced concavity of the second intercalary plate (2a), which appears collapsed with respect to the other plates. Phylogenetic analyses based on the large subunit 28S rDNA (D1/D2) and the internal transcribed spacer (ITS rDNA) support the attribution of A. dexteroporum to the genus Azadinium and its separation from the other known species. LC/MS‐TOF analysis shows that Azadinium dex‐teroporum produces azaspiracids in low amounts. Some of them have the same molecular weight as known compounds such as azaspiracid‐3 and ‐7 and Compound 3 from Amphidoma languida, as well as similar fragmentation patterns in some cases. This is the first finding of a species producing azapiracids in the Mediterranean Sea.  相似文献   

14.
Two populations of Epistylis wuhanensis n. sp., a new freshwater peritrich ciliate, were isolated from different freshwater ponds located in Hubei, China. Their morphological characteristics were investigated using live observation, protargol impregnation, and scanning electron microscopy (SEM). Specimens from the two populations showed identical arrangement of the infraciliature and identical small subunit ribosomal RNA (SSU rRNA) gene and ITS1‐5.8S‐ITS2 sequences. The zooids present bell‐shaped and 90–175 × 27–54 μm in vivo. Macronucleus is variable in shape and located in the middle of cell. Pellicle is usually smooth with 139–154 and 97–105 striations above and below the trochal band, respectively. SSU rRNA gene and ITS1‐5.8S‐ITS2 sequences of E. wuhanensis n. sp. did not match any available sequences in GenBank. Phylogenetically, E. wuhanensis n. sp. clusters with the other Epistylis within the family Epistylididae, but is distinct from the major clades of Epistylis. Above all, the morphological characteristics and molecular analyses support that the present Epistylis is a new species. Expanded phylogenetic analyses of sessilids based on both SSU rRNA gene sequences and ITS1‐5.8S‐ITS2 sequences reveal that the genus Epistylis consists of Epistylis morphospecies and taxonomic revision of the genus is needed.  相似文献   

15.
Bacterial endosymbionts have been detected in some groups of plant‐parasitic nematodes, but few cases have been reported compared to other groups in the phylum Nematoda, such as animal‐parasitic or free‐living nematodes. This study was performed on a wide variety of plant‐parasitic nematode families and species from different host plants and nematode populations. A total of 124 nematode populations (previously identified morphologically and molecularly) were screened for the presence of potential bacterial endosymbionts using the partial 16S rRNA gene and fluorescence in situ hybridization (FISH) and confocal microscopy. Potential bacterial endosymbionts were only detected in nematode species belonging to the genus Xiphinema and specifically in the X. americanum group. Fifty‐seven partial 16S rRNA sequences were obtained from bacterial endosymbionts in this study. One group of sequences was closely related to the genus ‘Candidatus Xiphinematobacter’ (19 bacterial endosymbiont sequences were associated with seven nematode host species, including two that have already been described and three unknown bacterial endosymbionts). The second bacterial endosymbiont group (38 bacterial endosymbiont sequences associated with six nematode species) was related to the family Burkholderiaceae, which includes fungal and soil–plant bacterial endosymbionts. These endosymbionts were reported for the first time in the phylum Nematoda. Our findings suggest that there is a highly specific symbiotic relationship between nematode host and bacterial endosymbionts. Overall, these results were corroborated by a phylogeny of nematode host and bacterial endosymbionts that suggested that there was a high degree of phylogenetic congruence and long‐term evolutionary persistence between hosts and endosymbionts.  相似文献   

16.
The molecular phylogeny and comparative morphological studies reported here provide evidence for the recognition of the genus Picoa, an hypogeous desert truffle, in the family Pyronemataceae (Ascomycota, Pezizales). Picoa juniperi and Picoa lefebvrei were reassigned to the genus Picoa based on large subunit (LSU) sequence (28S) rDNA and internal transcribed spacer (ITS) rDNA (including the partial 18S, ITS1, ITS2, 5.8S gene, and partial 28S of the nuclear rDNA) data. Morphological studies of spores, asci, perida, and gleba revealed high similarities between P. lefebvrei and P. juniperi, thereby confirming the membership of both species in the genus Picoa. These two species were primarily distinguishable based on ascospore ornamentation.  相似文献   

17.
The plant‐parasitic nematode Nacobbus aberrans sensu lato is an agricultural pest of quarantine importance. Due to the morphometric, physiological and genetic variability observed within the species, there is no agreement on the taxonomy of this nematode. The objective of this study was to analyse the ITS rDNA region and the D2–D3 expansion segments of 28S rDNA in 10 Argentine populations and one from Ecuador and to establish their phylogenetic relationship with other known sequences from South and North America. Phylogenetic trees of the ITS gene showed seven statistically well‐supported clades; the high and significant Fst values obtained among these groups confirmed this partitioning. The Argentine populations here considered were separated into three clades: one comprising a population from the Andean region and two grouping nematodes from lower altitudes. Three other clades were distinguished for South American populations, which included known sequences of individuals from Peru, Bolivia and north of Argentina. The other clade included sequences from Mexico, Ecuador and two Argentine populations of unknown origin. The important degree of genetic divergence observed among Andean populations suggests that the Andes may have played a crucial role in speciation of Nacobbus, which would have originated in this region. Although D2–D3 segments exhibited lower variation, they were useful for establishing phylogenetic relationships among the Argentine populations considered in this work. As there are no other GenBank sequences available for these segments, it was not possible to make comparisons with other populations from South and North America. The considerable genetic differentiation observed in ITS rDNA region among Nacobbus populations showed evidence of cryptic species within the N. aberrans s.l. complex. Integration of morphological and morphometric studies and molecular analyses considering other genes may aid in the identification of species and their phylogenetic relationships within this genus.  相似文献   

18.
Ninety‐two strains of Microcoleus vaginatus (=nomenclatural‐type species of the genus Microcoleus Desmazières ex Gomont) and Phormidium autumnale Trevisan ex Gomont from a wide diversity of regions and biotopes were examined using a combination of morphological and molecular methods. Phylogenies based on the 16S rDNA and 16S‐23S ITS (partial) demonstrated that the 92 strains, together with a number of strains in GenBank, were members of a highly supported monophyletic clade of strains (Bayesian posterior probability = 1.0) distant from the species‐cluster containing the generitype of Phormidium. Similarity of the 16S rRNA gene exceeded 95.5% among all members of the Microcoleus clade, but was less than 95% between any Microcoleus strains and species outside of the clade (e.g., Phormidium sensu stricto). These findings, which are in agreement with earlier studies on these taxa, necessitate the revision of Microcoleus to include P. autumnale. Furthermore, the cluster of Phormidium species in the P. autumnale group (known as Group VII) must be moved into Microcoleus as well, and these nomenclatural transfers are included in this study. The main diacritical characters defining Microcoleus are related to the cytomorphology of trichomes, including: narrowed trichome ends, calyptra, cells shorter than wide up to more or less isodiametric, and facultative presence of sheaths. The majority of species are 4–10 μm in diameter. The possession of multiple trichomes in a common sheath is present facultatively in many but not all species.  相似文献   

19.
The subsection Magnicellulatae of the genus Podosphaera section Sphaerotheca belongs to the tribe Cystotheceae of the Erysiphaceae, which has the characteristic of producing catenate conidia with distinct fibrosin bodies. In this study, we newly determined the nucleotide sequences of the D1/D2 domains of the 28S rDNA region and the sequences of the rDNA internal transcribed spacer (ITS) region to investigate the relationships between the phylogeny of this fungal group and their host plants. The results indicated that the 28S rDNA region is too conservative for phylogenetic analysis of this fungal group. The phylogenetic analysis using 95 ITS sequences demonstrated that two or more Magnicellulatae taxa often infect the same plant genus or species. Although there is a close relationship between Magnicellulatae and asteraceous hosts, this association seems to be not as strict as that between Golovinomyces and the Asteraceae. The difference between the two fungal groups may be explained by their different evolutionary timing.  相似文献   

20.
Globodera millefolii and G. artemisiae are interesting because their type localities (Estonia and Russia, respectively) are geographically distant from those of the potato cyst nematodes and other Globodera species that seem to have originated in the Western world, and because the type host for each is a member of Compositae rather than Solanaceae. Sequence data for ITS1, ITS2, and 5.8S ribosomal DNA (ITS rDNA) for G. millefolii and G. artemisiae were nearly identical to sequence data for Cactodera salina from the rhizosphere of the estuary plant Salicornia bigelovii in Sonora, Mexico. The ITS rDNA sequences of these three species were all about 94% similar to those of two other Cactodera species for which ITS rDNA data were obtained. Phylogenetic analysis indicated that, based on the ITS rDNA data, G. millefolii and G. artemisiae are more closely related phylogenetically to the Cactodera species than to other nominal Globodera species. The molecular data further suggest that the genus Cactodera may comprise two or more morphologically similar but separate groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号